Chemistry, asked by komalverma88, 7 months ago

4. Prove that, "The time required for 99% completion of a first order reaction is double than the
time required for 90% completion."

Answers

Answered by nirman95
3

To prove:

The time required for 99% completion of a first order reaction is double than the time required for 90% completion.

Proof:

For 99% completion :

  \therefore \: \rm{t_{99\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{1 -  \frac{99}{100} } ) }

  =  > \: \rm{t_{99\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{1 -  0.99} ) }

  =  > \: \rm{t_{99\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{0.01} ) }

  =  > \: \rm{t_{99\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{ {10}^{ - 2} } ) }

  =  > \: \rm{t_{99\%} =  \dfrac{1}{k} \:  \:   ln(  {10}^{2}  ) }

  =  > \: \rm{t_{99\%} =2 \times  \bigg \{  \dfrac{1}{k} \:  \:   ln( 10 )  \bigg \}}

For 90% completion:

  \therefore \: \rm{t_{90\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{1 -  \frac{90}{100} } ) }

 =  >  \: \rm{t_{90\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{1 - 0.9} ) }

 =  >  \: \rm{t_{90\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{0.1} ) }

 =  >  \: \rm{t_{90\%} =  \dfrac{1}{k} \:  \:   ln( \dfrac{1}{ {10}^{ - 1} } ) }

 =  >  \: \rm{t_{90\%} =  \dfrac{1}{k} \:  \:   ln(10 ) }

So, we can say that :

 \boxed{ \bf{ \huge{t_{99\%} = 2 \times t_{90\%}}}}

Similar questions