Accountancy, asked by mittalbharat2003, 19 days ago

4. (Recoupment of Shortworkings in the following years & there is strike). Mineral Ltd. leased
2018 ? 5,000).
a property from Sarkar at a royalty of 1.50 per ton with a minimum rent of 10,000 per
annum. Each year's excess of minimum rent over royalties is recoverable out of royalties of
next five years. In the event fof a strike and the minimum rental not being reached, the
lease provided that the actual royalties earned for the year discharged all rental
obligations for the year.
The results of working of the property are given below:
2012 2013 2014 2015 2016 2017 2018 2019
Strike year
Nil
3,300 9,000 11,100 14,000 15,000 8,000 15,200
Year
Actual Royalty (in 5)
There is strike for 3 months in 2018.

Answers

Answered by guptababuram234
0

Answer:

Solution−

Given that,

The total CP of 2 items is Rs.1200 and the CP of the first one is 1.5 times the CP of the other.

Let assume that,

Cost Price of second item be Rs x

So, cost price of first item is Rs 1.5 x

According to statement, the total cost price of 2 items is Rs 1200.

\begin{gathered}\rm \: x + 1.5x = 1200 \\ \end{gathered}

x+1.5x=1200

\begin{gathered}\rm \: 2.5x = 1200 \\ \end{gathered}

2.5x=1200

\rm \: x = \dfrac{1200}{2.5}x=

2.5

1200

\rm \: x = \dfrac{1200 \times 10}{25}x=

25

1200×10

\begin{gathered}\rm\implies \:x = 48 \\ \end{gathered}

⟹x=48

So, we have

Cost Price of second item = Rs 480.

Now, Further given that,

Selling Price of second item = Rs 520

Since, Selling Price > Cost Price

So, it means, there is Profit in this transaction.

We know,

\begin{gathered}\boxed{\sf{ \:\rm \: Profit\% = \frac{Selling \: Price - Cost \: Price}{Cost \: Price} \times 100\% \: \: }} \\ \end{gathered}

Profit%=

CostPrice

SellingPrice−CostPrice

×100%

So, on substituting the values, we get

\begin{gathered}\rm \: Profit\% = \dfrac{520 - 480}{480} \times 100\% \\ \end{gathered}

Profit%=

480

520−480

×100%

\begin{gathered}\rm \: Profit\% = \dfrac{40}{480} \times 100\% \\ \end{gathered}

Profit%=

480

40

×100%

\begin{gathered}\rm \: Profit\% = \dfrac{1}{12} \times 100\% \\ \end{gathered}

Profit%=

12

1

×100%

\begin{gathered}\rm \: Profit\% = \dfrac{1}{3} \times 25\% \\ \end{gathered}

Profit%=

3

1

×25%

\begin{gathered}\rm\implies \:Profit \: \% \: = \: 8.33\% \\ \end{gathered}

⟹Profit%=8.33%

So, option (b) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

MoreFormulae

MoreFormulae

★Gain=S.P.–C.P.

★Loss=C.P.–S.P.

★Gain%=(

C.P.

Gain

×100)%

★Loss%=(

C.P.

Loss

×100)%

★S.P.=

100

(100+Gain%)or(100−Loss%)

×C.P.

Similar questions