Math, asked by nandini1318, 1 year ago

(4 root 2 /15 root -3 root 2) + (3 root 5 / root 10 -root 3) + (5 root 5 / 6 + root 5) rationalisation of denominator​


nandini1318: please answer this

Answers

Answered by sivaprasath
4

Answer:

\frac{1911 + 465\sqrt{2} - 210\sqrt{5} +868\sqrt{6} + 93\sqrt{15}}{217}

Step-by-step explanation:

Given :

To rationalise the denominator of :

\frac{4\sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3} } + \frac{5\sqrt{5} }{6+\sqrt{5}}

Solution :

\frac{4\sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3} } + \frac{5\sqrt{5} }{6+\sqrt{5}}

(\frac{4\sqrt{2}}{\sqrt{3} - \sqrt{2}}) + (\frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3} }) + (\frac{5\sqrt{5} }{6+\sqrt{5}})

__

\frac{4\sqrt{2}}{\sqrt{3} - \sqrt{2}}

\frac{4\sqrt{2}}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}

\frac{4\sqrt{2}(\sqrt{3} + \sqrt{2})}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{4\sqrt{2}(\sqrt{3} + \sqrt{2})}{3 - 2} = \frac{4\sqrt{2}(\sqrt{3} + \sqrt{2})}{1} =4\sqrt{2}(\sqrt{3} + \sqrt{2})

__

\frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3} }

\frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3} } \times \frac{\sqrt{10} + \sqrt{3} }{\sqrt{10} + \sqrt{3} }

\frac{3\sqrt{5}(\sqrt{10} + \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2} = \frac{3\sqrt{5}(\sqrt{10} + \sqrt{3})}{10 - 3} = \frac{3\sqrt{5}(\sqrt{10} + \sqrt{3})}{7}

__

\frac{5\sqrt{5} }{6+\sqrt{5}}

\frac{5\sqrt{5} }{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}

\frac{5\sqrt{5}(6-\sqrt{5})}{6^2-(\sqrt{5})^2} = \frac{5\sqrt{5}(6-\sqrt{5})}{36-5} = \frac{5\sqrt{5}(6-\sqrt{5})}{31}

__

\frac{4\sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3} } + \frac{5\sqrt{5} }{6+\sqrt{5}} = 4\sqrt{2}(\sqrt{3} + \sqrt{2}) + \frac{3\sqrt{5}(\sqrt{10} + \sqrt{3})}{7} - \frac{5\sqrt{5}(6-\sqrt{5})}{31}

4\sqrt{2}(\sqrt{3} + \sqrt{2}) + \frac{3\sqrt{5}(\sqrt{10} + \sqrt{3})}{7} - \frac{5\sqrt{5}(6-\sqrt{5})}{31}

\frac{4\sqrt{2}(\sqrt{3} + \sqrt{2}) \times 31 \times 7}{31 \times 7} + \frac{3\sqrt{5}(\sqrt{10} + \sqrt{3})\times 31}{7 \times 31} - \frac{5\sqrt{5}(6-\sqrt{5}) \times 7}{31 \times 7}

\frac{868\sqrt{2}(\sqrt{3} + \sqrt{2})}{217} + \frac{93\sqrt{5}(\sqrt{10} + \sqrt{3})}{217} - \frac{35\sqrt{5}(6-\sqrt{5})}{217}

\frac{868\sqrt{2}(\sqrt{3} + \sqrt{2}) + 93\sqrt{5}(\sqrt{10} + \sqrt{3}) - 35\sqrt{5}(6-\sqrt{5})}{217}

\frac{868\sqrt{6} + 1736 + 93\sqrt{15} + 465\sqrt{2} - 210\sqrt{5}+175}{217}

\frac{1911 + 465\sqrt{2} - 210\sqrt{5} +868\sqrt{6} + 93\sqrt{15}}{217}

Similar questions