Math, asked by laughterrajput7, 11 months ago

4. S (x3 + 3x2 + 3x+1)dx​

Answers

Answered by Anonymous
2

{\bold{\huge{\red{\underline{\green{ANSWER}}}}}}

 \frac{d}{dx}(  {x}^{3}  + 3 {x}^{2}  + 3x + 1)

diffrentiate with respect to x

we get,

3 {x}^{2}  + 6x + 3

hope it help➡❤

Answered by Anonymous
7

Answer:

\large\boxed{ \sf{\frac{ {x}^{4} }{4}  +  {x}^{3}  +  \frac{3}{2}  {x}^{2}  + x + c}}

Step-by-step explanation:

We have to integrate :

   \displaystyle\int({x}^{3}  + 3 {x}^{2}  + 3x + 1)dx

Integration:

 = \displaystyle\int {x}^{3} dx + 3\displaystyle\int {x}^{2}  dx+ 3\displaystyle\int \: x dx + \displaystyle\int \: dx \\  \\  =  \frac{ {x}^{(3 + 1)} }{3 + 1}  + 3 \times  \frac{ {x}^{(2 + 1)} }{2 + 1}  + 3 \times  \frac{ {x}^{(1 + 1)} }{1 + 1}  +  \frac{ {x}^{(0 + 1)} }{0 + 1}  + c \\  \\  =   \frac{ {x}^{4} }{4}  +  \frac{3 {x}^{3} }{3}  +  \frac{3 {x}^{2} }{2}  + x + c \\  \\  =   \sf{\frac{ {x}^{4} }{4}  +  {x}^{3}  +  \frac{3}{2}  {x}^{2}  + x + c}

Here, c is the integral constant.

Concept Map:-

  •  \displaystyle\int {x}^{n} dx =  \frac{ {x}^{(n + 1)} }{n + 1}  + c
Similar questions