Math, asked by Vibhusinghbhadouria, 7 months ago

4. Show that the diagonals of a square are equal
and bisect each other at right angles.

Answers

Answered by reshamsiddiquip50tog
1

Step-by-step explanation:

answr

LOGIN

JOIN NOW

What would you like to ask?

8th

Maths

Understanding Quadrilaterals

Some Special Parallelograms

Show that the diagonals of ...

MATHS

Asked on October 15, 2019 byAmrin Chaudhary

Show that the diagonals of a square are equal and bisect each other at right angles.

MEDIUM

Share

Study later

VIDEO EXPLANATION

ANSWER

Given that ABCD is a square.

To prove : AC=BD and AC and BD bisect each other at right angles.

Proof: 

(i)  In a ΔABC and ΔBAD,

AB=AB ( common line)

BC=AD ( opppsite sides of a square)

∠ABC=∠BAD ( = 90° )

ΔABC≅ΔBAD( By SAS property)

AC=BD ( by CPCT).

(ii) In a ΔOAD and ΔOCB,

AD=CB ( opposite sides of a square)

∠OAD=∠OCB ( transversal AC )

∠ODA=∠OBC ( transversal BD )

ΔOAD≅ΔOCB (ASA property)

OA=OC ---------(i)

Similarly OB=OD ----------(ii)

From (i) and (ii)  AC and BD bisect each other.

Now in a ΔOBA and ΔODA,

OB=OD ( from (ii) )

BA=DA

OA=OA  ( common line )

ΔAOB=ΔAOD----(iii) ( by CPCT

∠AOB+∠AOD=180°  (linear pair)

2∠AOB=180°

∠AOB=∠AOD=90

make my answer brallinest

Answered by CandyCakes
1

Step-by-step explanation:

Given that ABCD is a square.

To prove : AC=BD and AC and BD bisect each other at right angles.

Proof:

(i) In a ΔABC and ΔBAD,

AB=AB ( common line)

BC=AD ( opppsite sides of a square)

∠ABC=∠BAD ( = 90° )

ΔABC≅ΔBAD( By SAS property)

AC=BD ( by CPCT).

(ii) In a ΔOAD and ΔOCB,

AD=CB ( opposite sides of a square)

∠OAD=∠OCB ( transversal AC )

∠ODA=∠OBC ( transversal BD )

ΔOAD≅ΔOCB (ASA property)

OA=OC ---------(i)

Similarly OB=OD ----------(ii)

From (i) and (ii) AC and BD bisect each other.

Now in a ΔOBA and ΔODA,

OB=OD ( from (ii) )

BA=DA

OA=OA ( common line )

ΔAOB=ΔAOD----(iii) ( by CPCT

∠AOB+∠AOD=180° (linear pair)

2∠AOB=180°

∠AOB=∠AOD=90°

∴AC and BD bisect each other at right angles.

Attachments:
Similar questions