Math, asked by shraddha4040, 1 year ago

4 (sin^2 60° - cos ^2 45°)/tan ^2 30°+sin^0°

Answers

Answered by Anonymous
83
 \underline{\large\bf{\mathfrak{Hello!}}}

 = > \frac{4(( {sin}^{2} 60 - {cos}^{2} 45)}{ {tan}^{2}30 + sin0 } \\ \\ sin60 = \frac{ \sqrt{3} }{2} \\ cos45 = \frac{1}{ \sqrt{2} } \\ tan30 = \frac{1}{ \sqrt{3} } \\ sin0 = 0 \\ \\ = > \frac{4( {( \frac{ \sqrt{3} }{2} )}^{2} - {( \frac{1}{ \sqrt{2} } )}^{2} )}{ {( \frac{1}{ \sqrt{3} } )}^{2} - 0} \\ \\ = > \frac{4( \frac{3}{4} - \frac{1}{2}) }{ \frac{1}{3} } \\ \\ = > \frac{4( \frac{3 - 2}{4}) }{ \frac{1}{3} } \\ \\ = > \frac{4 \times \frac{1}{4} }{ \frac{1}{3} } \\ \\ = > \frac{1}{ \frac{1}{3} } \\ \\ = > 3

 \bf{\mathfrak{Hope \: this \: helps...:)}}

shraddha4040: good
Anonymous: ^_^
Tomboyish44: Awesome answer!
Anonymous: ^_^
Answered by TheClara
0

\underline{\large\bf{\mathfrak{Hello!}}}

\begin{lgathered}= > \frac{4(( {sin}^{2} 60 - {cos}^{2} 45)}{ {tan}^{2}30 + sin0 } \\ \\ sin60 = \frac{ \sqrt{3} }{2} \\ cos45 = \frac{1}{ \sqrt{2} } \\ tan30 = \frac{1}{ \sqrt{3} } \\ sin0 = 0 \\ \\ = > \frac{4( {( \frac{ \sqrt{3} }{2} )}^{2} - {( \frac{1}{ \sqrt{2} } )}^{2} )}{ {( \frac{1}{ \sqrt{3} } )}^{2} - 0} \\ \\ = > \frac{4( \frac{3}{4} - \frac{1}{2}) }{ \frac{1}{3} } \\ \\ = > \frac{4( \frac{3 - 2}{4}) }{ \frac{1}{3} } \\ \\ = > \frac{4 \times \frac{1}{4} }{ \frac{1}{3} } \\ \\ = > \frac{1}{ \frac{1}{3} } \\ \\ = > 3\end{lgathered}

\bf{\mathfrak{Hope \: this \: helps...:)}}

Similar questions