Math, asked by Navned, 1 year ago

4(sin^4 60 + cos^4 30) -3(tan^2 60-tan^2 45)+5cos^2 45

Answers

Answered by sivaprasath
41
Solution:

_____________________________________________________________

Given & To Find:

The value of,

4(sin^4 60 + cos^4 30) -3(tan^2 60-tan^2 45)+5cos^2 45

_____________________________________________________________

As we know that,

sin 60 =  \frac{ \sqrt{3} }{2}  ,

cos 30 =  \frac{ \sqrt{3} }{2} ,

tan 60 =  \sqrt{3} ,

tan 45 = 1,

cos 45 =  \frac{1}{ \sqrt{2} } ,.

__________________________________

So,

4(sin^4 60 + cos^4 30) -3(tan^2 60-tan^2 45)+5cos^2 45

=> 4(( \frac{ \sqrt{3} }{2} )^4 + ( \frac{ \sqrt{3} }{2}) ^4) -3( (\sqrt{3})^2 - (1)^2 )+5( \frac{1}{ \sqrt{2} } )

=> 4((  \frac{9}{4}  + \frac{9}{4} ) -3( (3 - 1 )+( \frac{5}{ \sqrt{2} } )

=> 4(( \frac{18}{4} ) -3( 2 )+( \frac{5}{ \sqrt{2} } )

=> 18 -6 +( \frac{5}{ \sqrt{2} } )

=> 12 -  \frac{5}{ \sqrt{2} }

=>  \frac{ 12\sqrt{2}-5 }{ \sqrt{2} }

=>  \frac{24 - 5 \sqrt{2} }{2}

=> 12 - 2.5 \sqrt{2}

_____________________________________________________________

                                Hope it Helps!!

=> Mark as Brainliest,/\

Answered by rameshs2581
81

4 (sin^4 60°+cos^4 30°)-3 ( tan^2 60°- tan^2 45°)+5 (cos^2 45°)

Solution:-

=> 4 {(root of 3/2)^4+(root of 3/2)^4}-3 {( root of 3)^2-1}+5 (1/ root of 2)^×

=> 4(9/16+9/16)-3 (3-1)+5 (1/2)

=> 4 (18/16)-3 (2)+5/2

=> 18/4-6+5/2

=> 18-24+10/4

=> -6+10/4

=> 4/4

=> 1

Similar questions