Math, asked by smtsavita1979, 1 year ago

4 sin square 30 degree + cos square 60 degree minus 3 cos square 45 degree minus 10 square 45 degree is equal to 7 by 2​

Answers

Answered by MaheswariS
7

Answer:

4(sin^2{60}+cos^2{30})-3cos^2{45}-tan^2{45}=\frac{7}{2}

Step-by-step explanation:

I think your question must be

Prove that:4(sin^2{60}+cos^2{30})-3cos^2{45}-tan^2{45}=\frac{7}{2}

Now,

4(sin^2{60}+cos^2{30})-3cos^2{45}-tan^2{45}

=4[(\frac{\sqrt3}{2})^2+(\frac{\sqrt3}{2})^2]-3(\frac{1}{\sqrt2})^2-(1)^2

=4[\frac{3}{4}+\frac{3}{4}]-3(\frac{1}{2})-1

=4[\frac{6}{4}]-\frac{3}{2}-1

=6-\frac{5}{2}

=\frac{12-5}{2}

=\frac{7}{2}

Answered by pinquancaro
2

Hence proved 4(\sin^2{60}+\cos^2{30})-3\cos^2{45}-\tan^2{45}=\frac{7}{2}

Step-by-step explanation:

To prove : 4(\sin^2{60}+\cos^2{30})-3\cos^2{45}-\tan^2{45}=\frac{7}{2}

Proof :

Taking LHS,

LHS=4(\sin^2{60}+\cos^2{30})-3\cos^2{45}-\tan^2{45}

Using trigonometric values,

LHS=4[(\frac{\sqrt3}{2})^2+(\frac{\sqrt3}{2})^2]-3(\frac{1}{\sqrt2})^2-(1)^2

LHS=4[\frac{3}{4}+\frac{3}{4}]-3(\frac{1}{2})-1

LHS=4[\frac{6}{4}]-\frac{3}{2}-1

LHS=6-\frac{5}{2}

LHS=\frac{12-5}{2}

LHS=\frac{7}{2}

LHS=RHS

#Learn more

5 cos square 60 degree +4 sec square 30 degree - tan square 45 degree by sin square 30 degree +cos square 30 degree

https://brainly.in/question/10829630

Similar questions