Math, asked by keshavmunjal22, 1 year ago

4 sin theta into sin pi by 3 + theta into sin 2 pi by 3 + theta equals to sin 3
theta

Answers

Answered by amitnrw
17

Answer:

4Sinθ * Sin(π/3 + θ) * Sin(2π/3 + θ) = Sin3θ

Step-by-step explanation:

4 sin theta into sin pi by 3 + theta into sin 2 pi by 3 + theta equals to sin 3

theta

4Sinθ * Sin(π/3 + θ) * Sin(2π/3 + θ) = Sin3θ

LHS = 4Sinθ * Sin(π/3 + θ) * Sin(2π/3 + θ)

Sinx = Sin(π - x) => Sin(2π/3 + θ) = Sin(π/3 - θ)

= 4Sinθ * Sin(π/3 + θ) * Sin(π/3 - θ)

Sin(A + B)* Sin(A - B) = Sin²A - Sin²B

= 4Sinθ * (Sin²π/3 - Sin²θ)

Sin²π/3 = 3/4

= 4Sinθ * (3/4 - Sin²θ)

= 3Sinθ - 4 Sin³θ

RHS = Sin3θ

= Sin(2θ + θ)

Sin(A+B) = SinA CosB + CosA SinB

= Sin2θCosθ + cos2θSinθ

Using Sin2θ =  2SinθCosθ  & cos2θ = cos²θ - Sin²θ

= 2SinθCosθCosθ + (cos²θ - Sin²θ)Sinθ

= Sinθ ( 2cos²θ + cos²θ - Sin²θ)

= Sinθ(3Cos²θ - Sin²θ)

Cos²θ =  1 - Sin²θ

= Sinθ(3 - 3Sin²θ - Sin²θ)

= Sinθ(3 - 4Sin²θ)

= 3Sinθ - 4 Sin³θ

LHS = RHS

4Sinθ * Sin(π/3 + θ) * Sin(2π/3 + θ) = Sin3θ

Similar questions