♦4 (sin⁴60 + cos²60) - 3(tan²60 - tan²45) + 5 cos²45 = ?
Solve it by using values of Trigonometric angles.
Answers
Answered by
3
Answer:
Given:
4 (sin* 60° + cos* 30°) - 3 (tan² 60° - tan² 45°) + 5 cos² 45°
= 4((√3/2) + (√3/2)¹)-3((√3)²-1²)+5(1/ √2)²
[sin 60º = √3/2, cos 30º = √3/2, cos 45° =1/√2, tan 60º = √3, tan 45º = 1]
= 4 (9/16) + (9/16))-3(3-1) + 5 × ½
= 4((9+9)/16) - 3 x 2 + 5/2
= 4x (18/16) - 6 + 5/2
= (18/4) - 6+ 5/2
= 9/2-6 +5/2
= 9/2 + 5/2-6
= (9+5)/2 - 6
= 14/2-6
= 7-6=1
4 (sin 60° + cos* 30%) -3 (tan² 60°-tan² 45%) + 5 cos² 45° = 1
Hence, 4 (sinª 60° + cos² 30°) - 3 (tan² 60° - tan² 45°) + 5 cos² 45° = 1
HOPE THIS ANSWER WILL HELP YOU...
Step-by-step explanation:
Mark me brainlist please
Similar questions