4. The adjacent sides of a rectangle are
x2 - 4xy + 7y2 and x3 - 5xy2. Find its area.
5. The base and the altitude of a triangle are
(3x - 4y) and (6x + 5y) respectively. Find its
area.
Answers
4.Sides of rectangle=x²-4xy+7y²and x³-5xy²
Area of rectangle = length × breadth
=x²-4xy+7y²(x³-5xy²)
=x²-4xy+7y²(x³-5xy²)=x²(x³-5xy²) - 4xy(x³-5xy²)+7y²(x³-5xy²)
=x²-4xy+7y²(x³-5xy²)=x²(x³-5xy²) - 4xy(x³-5xy²)+7y²(x³-5xy²)=x⁵-5x³y²-4x⁴y+20x²y³+7x³y²-35xy⁴
=x²-4xy+7y²(x³-5xy²)=x²(x³-5xy²) - 4xy(x³-5xy²)+7y²(x³-5xy²)=x⁵-5x³y²-4x⁴y+20x²y³+7x³y²-35xy⁴=x⁵-5x³y²+7x³y²-4x⁴y+20x²y³-35xy⁴
=x²-4xy+7y²(x³-5xy²)=x²(x³-5xy²) - 4xy(x³-5xy²)+7y²(x³-5xy²)=x⁵-5x³y²-4x⁴y+20x²y³+7x³y²-35xy⁴=x⁵-5x³y²+7x³y²-4x⁴y+20x²y³-35xy⁴=x⁵+2x³y²-4x⁴y+20x²y³-35xy⁴
5. Base of triangle=3x-4y
Altitude of triangle=6x+5y
Area = ½×Altitude×Base
½×Altitude×Base=½(6x+5y)(3x-4y)
½×Altitude×Base=½(6x+5y)(3x-4y)=½[6x(3x-4y)+5y(3x-4y)]
½×Altitude×Base=½(6x+5y)(3x-4y)=½[6x(3x-4y)+5y(3x-4y)]=½[18x²-24xy+15xy-20y²]
½×Altitude×Base=½(6x+5y)(3x-4y)=½[6x(3x-4y)+5y(3x-4y)]=½[18x²-24xy+15xy-20y²]=½[18x²-9xy-20y²]
½×Altitude×Base=½(6x+5y)(3x-4y)=½[6x(3x-4y)+5y(3x-4y)]=½[18x²-24xy+15xy-20y²]=½[18x²-9xy-20y²]=9x²-4.5xy-10y²
½×Altitude×Base=½(6x+5y)(3x-4y)=½[6x(3x-4y)+5y(3x-4y)]=½[18x²-24xy+15xy-20y²]=½[18x²-9xy-20y²]=9x²-4.5xy-10y²Please mark it as brainliest and rate it five