4 The angles of a quadrilaterad are in the ratio 3:45:6. Find the angles quadrilateral.
Answers
Question:-
The angles of a quadrilaterad are in the ratio 3:4:5:6. Find the angles quadrilateral.
Answer:-
- The angles of quadrilateral are 60°,80°,100° and 120°.
To find:-
- All angles of quadrilateral
Solution:-
- Ratio = 3:4:5:6
Put x in the ratio,
- 3x
- 4x
- 5x
- 6x
As we know,
- Sum of all angles = 360°
According to question,
- The value of x is 20°
Put value of x in the ratio,
- 3x = 3×20 = 60°
- 4x = 4×20 = 80°
- 5x = 5×20 = 100°
- 6x = 6×20 = 120°
The angles of quadrilateral are 60°,80°,100° and 120°.
Step-by-step explanation:
In a quadilateral the angles add up to 360o
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6x
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6xThen:
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6xThen:3x+4x+5x+6x=360→
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6xThen:3x+4x+5x+6x=360→18x=360→x=20
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6xThen:3x+4x+5x+6x=360→18x=360→x=20Then the angles are 60o,80o,100oand120o
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6xThen:3x+4x+5x+6x=360→18x=360→x=20Then the angles are 60o,80o,100oand120o(because 3⋅20=60 etc)
In a quadilateral the angles add up to 360oLet's call the angles 3x,4x,5xand6xThen:3x+4x+5x+6x=360→18x=360→x=20Then the angles are 60o,80o,100oand120o(because 3⋅20=60 etc)Check: 60+80+100+120=360