Math, asked by deboshmita78, 4 months ago

4. The curved surface area of a cylinder is
8800 cm2. If the radius of a cylinder is 28 cm,
find its volume.​ ​

Answers

Answered by Yuseong
17

Clarification :

Here, as per the given question, we have C.S.A of the cylinder that is  \sf { 8800\: {cm}^{2} } and the radius of the cylinder that is 28 cm. Now, we have to find out its volume.

We'll calculate the volume by the given formula :

  •  \rm { {Volume}_{Cylinder} =( \pi {r}^{2} h) \: cubic \: units }

But, as we don't have the value of its height, so firstly we'll calculate the height by taking it as a variable and making a suitable equation with the help of C.S.A of cylinder.

Then, we'll substitute all the values in the formula of volume of the cylinder in order to get the answer.

Given:

• C.S.A of cylinder =  \sf { 8800 \: {cm}^{2} }

• Radius (r) = 28 cm

To calculate:

• Volume of the cylinder.

Calculation:

We know that,

 \star \:  \: {\underline {\boxed {\large {\sf \pink { {Volume}_{(Cylinder)} =  \pi {r}^{2}h  } }}}}

~Let us calculate the height first.

 \bigstar \: \underline{\boldsymbol{According \: to \: the \: Question:}} \\ \\ \\ \sf{ \longrightarrow {C.S.A}_{(Cylinder)} =2 \pi rh } \\ \\ \\ \sf{ \longrightarrow 8800 =2 \times \dfrac{22}{7} \times 28 \times h} \\ \\ \\ \sf{ \longrightarrow 8800 \: {cm}^{2} = 176 \: cm \times h \: cm } \\ \\ \\ \sf{ \longrightarrow \dfrac{8800 \: cm^2}{176 \: cm}=h \: cm } \\ \\ \\ \longrightarrow    \underline{\boxed{\sf{Height = 50 \: cm}}} \: \red{\bigstar}

~Now, calculating volume of the cylinder:

 \star \:  \: {\underline {\boxed {\large {\sf \pink { {Volume}_{(Cylinder)} =  \pi {r}^{2}h  } }}}}  \\  \\ \\   \sf{ \longrightarrow \: {Volume}_{(Cylinder)}  =   \dfrac{22}{7}  \times  {(28)}^{2} \times 50 \:  {cm}^{3}  } \\  \\  \\  \sf{ \longrightarrow \: {Volume}_{(Cylinder)}  =   \dfrac{22}{7}  \times  28 \times 28 \times 50 \:  {cm}^{3}  } \\  \\  \\ \sf{ \longrightarrow \: {Volume}_{(Cylinder)}  =   22 \times  4\times 28 \times 50 \:  {cm}^{3}  } \\  \\  \\  \longrightarrow \:   \underline{\boxed{\sf{{Volume}_{(Cylinder)}  =123200 \:  {cm}^{3} }}} \: \red{\bigstar}

Henceforth, volume of the cylinder is 123200 cubic centimetre.

More formulae:

  • C.S.A of cylinder = 2πrh
  • T.S.A of cylinder = 2πr(r+h)
  • Volume of cylinder = πr²
  • C.S.A of cube = 4s²
  • T.S.A of cube = 6s²
  • Volume of cube = s × s × s
  • Volume of cuboid = l × b × h
  • T.S.A of cuboid = 2(lb + lh + bh)
  • C.S.A of cuboid = 2(l+b) × h

» T.S.A and C.S.A are always calculated in square units.

» Volume is always calculated in cubic units.

Answered by Anonymous
6

We know, if radius is (r) and height (h), then

CSA = 2πrh

Radius given = 28 cm

CSA = 8800 cm^2

∴ 2πrh = 8800

⇒ 22/7 × 28h = 4400

⇒ 22 × 4h = 4400

⇒ h = (4400)/(22 × 4)

⇒ h = 50 cm

Now, volume = πr²h

So, V = 22/7 × 28 × 28 × 50 cm^3

⇒ V = 123200 cm^3

∴ The volume of the object was of 123200 cm^3.

Similar questions