Math, asked by adityamahto281, 4 months ago

4. The diameter of a circular garden is 220 m. Find the area of the garden.
[Take t = 3.14] for 7th classes​

Answers

Answered by ItzBrainlyGirl024
3

Answer:

Given that diameter of a circular garden d = 220m.  

Then the radius of the circular garden r = d/2  

                                                                  = 220/2  

                                                                  = 110m.  

Therefore the area of the garden = pi (r)^2  

                                                     = 22/7 × (110)^2  

                                                       = 22/ 110  

                                                       = 296032/7

PLZ MARK AS BRIANLIEST,FLW ME AND THX FOR THE SUPERB QUESTION

Answered by Anonymous
6

AnswEr-:

  • \mathrm {\bf{\star{\underline {\pink{ \:Area \:of\:Circular \:Garden \:is\:37,994m^{2}}}}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • The Diameter of Circular Garden is 220 m .

  • \pi = 3.14

\mathrm {\bf{To\:Find -:}}\\

  • The Area of Circular Garden.

\mathrm {\bf{\dag{ Solution \:of\:Question \:-:}}}

  • \underbrace {\mathrm {\bf { Understanding \:the\: Concept \:-:}}}\\

  • We have to find the Area of Circular Garden when Diameter of Circular garden is given .

  • Firstly Convert The Diameter of the Circular Garden to the Radius of The Circular Garden by putting the Diameter in the Formula for Radius of Circle.

  • By Putting Radius of Circular Garden in the Formula for Area of Circle and then We can get ,

  • The Area of Circular Garden.

_______________________________________

\mathrm {\bf{\dag{\underline {Finding \:Radius \:of\:Circular \:Garden \:-:}}}}\\

As , We Know that ,

  • \underline{\boxed{\star{\sf{\red{ Radius_{(Circle)}  \: = \: \dfrac{Diameter}{2} units  }}}}}\\

\mathrm {\bf{ Here-:}}\\

  • The Diameter of Circular Garden is 220 m .

Now By Putting known Values in the Formula for Radius of Circle-:

  • \qquad\quad\quad:\implies { \mathrm {Radius \:= \dfrac{220}{2} }}\\

  • \qquad\quad\quad:\implies { \mathrm {Radius \:= \dfrac{\cancel {220}}{\cancel {2}} }}\\

  • \qquad\quad\quad:\underline{\boxed { \frak{\pink {Radius \:= 110 m  }}}}\\

Therefore,

  • \mathrm {\bf{\star{\underline { \:Radius \:of\:Circular \:Garden \:is\:110m}}}}\\

_____________________________________________

\mathrm {\bf{\dag{\underline {Finding \:Area\:of\:Circular \:Garden \:-:}}}}\\

As , We Know that ,

  • \underline{\boxed{\star{\sf{\red{Area _{(Circle)}  \: = \: \pi \times Radius ^{2} \:sq.units  }}}}}\\

\mathrm {\bf{ Here-:}}\\

  • The Radius of Circular Garden is 110 m .

  • \pi = 3.14

Now By Putting known Values in the Formula for Area of Circle-:

  • \qquad\quad\quad:\implies { \mathrm {Area\:= 3.14 \times (110)^{2} }}\\

  • \qquad\quad\quad:\implies { \mathrm {Area\:= 3.14 \times 110\times 110  }}\\

  • \qquad\quad\quad:\implies { \mathrm {Area\:= 3.14 \times 12,100 }}\\

  • \qquad\quad\quad:\underline{\boxed { \frak{\pink {Area \:= 37994 m^{2}  }}}}\\

Hence ,

  • \mathrm {\bf{\star{\underline {\pink{ \:Area \:of\:Circular \:Garden \:is\:37,994m^{2}}}}}}\\

___________________________________________________

\large{\boxed {\mathrm |\:\:{\underline {More \:To\:know\:-:}}\:\:|}}\\

  • Area of Rectangle = Length × Breadth sq.units

  • Area of Square = Side × Side sq.units

  • Area of Triangle = ½ × Base × Height sq.units

  • Area of Trapezium = ½ × Height × (a + b) or Sum of Parallel sides sq.units

__________________________________________________

Similar questions