Math, asked by gouravnag2001, 7 months ago

4.
The equation ax2 + 2hxy + by2 = 0 represents a pair of parallel straight lines if
(a) a = b
(b)h? = ab
(c) ab=0 (d)h = ab.
otom?answer

Answers

Answered by shadowsabers03
13

Given equation,

\longrightarrow ax^2+2hxy+by^2=0

If this equation represents a pair of straight lines, then the equations of those straight lines should be the factors of this equation.

Let us factorise it as a quadratic equation in x, taking y constant.

\longrightarrow x=\dfrac{-2hy\pm\sqrt{(2hy)^2-4aby^2}}{2a}

\longrightarrow x=\dfrac{-2hy\pm\sqrt{4h^2y^2-4aby^2}}{2a}

\longrightarrow x=\dfrac{-2hy\pm2y\sqrt{h^2-ab}}{2a}

\longrightarrow x=\dfrac{-2y\left(h\pm\sqrt{h^2-ab}\right)}{2a}

\longrightarrow 2ax+2y\left(h\pm\sqrt{h^2-ab}\right)=0

So our equation in factorised form will be,

\longrightarrow \left(2ax+2y\left(h+\sqrt{h^2-ab}\right)\right)\left(2ax+2y\left(h-\sqrt{h^2-ab}\right)\right)=0

And so each line, among the pair of straight lines, will be represented by,

\longrightarrow 2ax+2y\left(h+\sqrt{h^2-ab}\right)=0\quad\quad\dots(1)

\longrightarrow 2ax+2y\left(h-\sqrt{h^2-ab}\right)=0\quad\quad\dots(2)

Slope of line (1) is,

\longrightarrow m_1=-\dfrac{2a}{2\left(h+\sqrt{h^2-ab}\right)}

\longrightarrow m_1=-\dfrac{a}{h+\sqrt{h^2-ab}}

And that of line (2) is,

\longrightarrow m_2=-\dfrac{2a}{2\left(h-\sqrt{h^2-ab}\right)}

\longrightarrow m_2=-\dfrac{a}{h-\sqrt{h^2-ab}}

If these two lines are parallel, so that or equation should represent a pair of parallel straight lines, the slopes of these lines should be equal.

\longrightarrow m_1=m_2

\longrightarrow -\dfrac{a}{h-\sqrt{h^2+ab}}=-\dfrac{a}{h-\sqrt{h^2-ab}}

\longrightarrow\underline{\underline{ab=0}}

Hence (c) is the answer.

Similar questions