Economy, asked by jp7003114, 8 months ago

4. The following figures are the heights in cms of 7 children chosen at random:
$4.59, 67, 69, 65, 70, 68
Calculate the simple arithmetic mean of the heights by () Direct Method, (i) Short-cut Method, and
(Step Deviation Method.
(Mean height=66 cms)​

Answers

Answered by ygunjay264
0

Answer:

I don't know if I know I will tell you but I don't know

Answered by anjumanyasmin
4

Given:

S.N.   Height  (X)   Deviation from assumed mean d=(X − A)  d'=d/i=d/2

 1          44                               −5                                                    -2.5

 2         59                              −10                                                   -5

3          67                                  −2                                                  -1

 4         69=A                              0                                                     0

 5          65                                -4                                                    -2

6          70                                  1                                                     0.5

 7          68                                 -1                                                    -0.5

N=7     ∑X=462                        Σd=−21                                             Σd'= −10.5

(1) Calculating mean height using direct method:

\bar{X}=\frac{\sum x}{N}

=64+59+67+69+65+70+68/7

=462/7

=66cms

(ii) Calculating mean height using short cut method:

X=A+∑d/N

=69−21/7

=69-3

=66cms

(iii) Calculating mean height using step-deviation method:

\bar{X}=A+\frac{\Sigma d^{\prime}}{N} \times i

\begin{array}{l}\bar{X}=69+\frac{(-10.5)}{7} \times 2 \\\text { or, } \bar{X}=69-\frac{21}{7} \\\Rightarrow \bar{X}=66 \mathrm{cms}\end{array}

Hence the arithmetic mean of the heights is 66cms

Similar questions