Math, asked by sharanshruti, 1 year ago

4 the power 2 X + 1 + 4 to the power x + 1 equal to 80 then find the value of x​

Answers

Answered by anu24239
3

\huge\mathfrak\red{Answer}

 {4}^{2x + 1}  +  {4}^{x + 1}  = 80 \\  {4}^{x + x + 1}  +  {4}^{x + 1}  = 80 \\  { 4}^{x} ( {4}^{x + 1} ) +  {4}^{x + 1}  = 80 \\  {4}^{x + 1} ( {4}^{x}  + 1) = 80 \\  {4}^{x} (4)( {4}^{x}  + 1) = 80 \\  {4}^{x} ( {4}^{x}  + 1) =  \frac{80}{4}  \\  {4}^{x} ( {4}^{x}  + 1) = 20 \\  {4}^{2x}  +  {4}^{x}  = 20 \\  {( {4}^{x} )}^{2}  +  {4}^{x}  = 20 \\  \:  \\ let \:  {4}^{x}  = y \\   {y}^{2}  + y = 20 \\  {y}^{2}  + y - 20 = 0 \\  {y}^{2}  + 5y - 4y - 20 = 0 \\ y(y + 5) - 4(y + 5) = 0 \\ (y - 4)(y + 5) = 0 \\  \\ so \: we \: get \\  {4}^{x}  = 4 \\  {4}^{x}  =  {4}^{1}  \\ so \: x = 1 \\  \\ another \: solution \\  {4}^{x}  =  - 5 \\ take \: log \: on \: both \: side \\ x( log4) =  log (- 5) \\  x =  \frac{ log( - 5)}{ log4 }

FORMULA USED.....

let \: any \: number\\  \\  {a}^{b}  =  {c}^{d}  \\ than \: after \: taking \: log \: on \: both \: side \\ we \: get \\ b \times  log(a)  = d \times  log(c)  \\  \\  {4}^{a + b}  =  {4}^{a}  \times  {4}^{b}

Similar questions