Math, asked by nootansh85, 5 hours ago

4. The product of two numbers is 503072. If one of the numbers is 316, find the other.

Answers

Answered by Anonymous
18

Answer:

Given :-

  • The product of two numbers is 503072.
  • One of the number is 316.

To Find :-

  • What is the other number.

Solution :-

Given :

\bigstar\: \: \bf{Product\: of\: two\: number =\: 503072}\\

\bigstar\: \: \bf{One\: of\: the\: number =\: 316}\\

As we know that,

\footnotesize\leadsto \sf\boxed{\bold{\pink{Product\: of\: two\: numbers =\: One\: number \times Other\: number}}}\\

Let,

\mapsto The other number be x

According to the question by using the formula we get,

\longrightarrow \sf 316 \times x =\: 503072

\longrightarrow \sf 316x =\: 503072

\longrightarrow \sf x =\: \dfrac{\cancel{503072}}{\cancel{316}}

\longrightarrow \sf x =\: \dfrac{1592}{1}

\longrightarrow \sf\bold{\red{x =\: 1592}}

\therefore The other number is 1592.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION :-

\implies \tt{316 \times x =\: 503072}

By putting x = 1592 we get,

\implies \tt{316 =\: 1592 =\: 503072}

\implies \tt{\bold{\green{503072 =\: 503072}}}

Hence, Verified.

Answered by MissVirius
13

Step-by-step explanation:

Answer:

Given :-

The product of two numbers is 503072.

One of the number is 316.

To Find :-

What is the other number.

Solution :-

Given :

\begin{gathered}\bigstar\: \: \bf{Product\: of\: two\: number =\: 503072}\\\end{gathered}

★Productoftwonumber=503072

\begin{gathered}\bigstar\: \: \bf{One\: of\: the\: number =\: 316}\\\end{gathered}

★Oneofthenumber=316

As we know that,

\begin{gathered}\footnotesize\leadsto \sf\boxed{\bold{\pink{Product\: of\: two\: numbers =\: One\: number \times Other\: number}}}\\\end{gathered}

Productoftwonumbers=Onenumber×Othernumber

Let,

\mapsto↦ The other number be x

According to the question by using the formula we get,

\longrightarrow \sf 316 \times x =\: 503072⟶316×x=503072

\longrightarrow \sf 316x =\: 503072⟶316x=503072

\longrightarrow \sf x =\: \dfrac{\cancel{503072}}{\cancel{316}}⟶x=

316

503072

\longrightarrow \sf x =\: \dfrac{1592}{1}⟶x=

1

1592

\longrightarrow \sf\bold{\red{x =\: 1592}}⟶x=1592

\therefore∴ The other number is 1592.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION :-

\implies \tt{316 \times x =\: 503072}⟹316×x=503072

By putting x = 1592 we get,

\implies \tt{316 =\: 1592 =\: 503072}⟹316=1592=503072

\implies \tt{\bold{\green{503072 =\: 503072}}}⟹503072=503072

Hence, Verified.

Similar questions