Math, asked by lipikakashawal, 9 months ago

4.
The ratio between the adjacent sides of a
parallelogram is 3:5. The perimeter of the
parallelogram is 144 cm. Find the lengths of the
sides of the parallelogram.



please give me the answer step by step

Answers

Answered by SarcasticL0ve
10

GivEn ratio between the adjacent sides of a parallelogram is 3:5.

And, The perimeter of the parallelogram is 144 cm.

We have to find, the lengths of the sides of the parallelogram.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let sides of Parallelogram be 3x and 5x.

⠀⠀⠀⠀⠀⠀⠀

Reference of image is shown in diagram

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,3)\qbezier(3,0)(3,0)(4,3)\qbezier(1,3)(1,3)(4,3)\qbezier(3,0)(0,0)(0,0)\put(-0.3,-0.2){$\sf A$}\put(-0.3,1.5){5x}\put(3.1,-0.2){$\sf B$}\put(1.1,-1){3x}\put(4,3){$\sf C$}\put(0.7,3){$\sf D$}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{We\;know\;that,}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Perimeter_{\;(parallelogram)} = 2( side_1 + side_2)}}}}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;values\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2(3x + 5x) = 144

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2(8x) = 144

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 16x = 144

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf x = \cancel{ \dfrac{144}{16}}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{\;9\;}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━━━

Therefore,

Sides of Parallelogram are,

  • \sf side_1 = 3x = 3 \times 9 = 27\;cm

  • \sf side_1 = 3x = 5 \times 9 = 45\;cm
Similar questions