Math, asked by omitrp, 19 days ago

4. The ratio of sides of a rectangle is 3 : 4. If its area is 300 m², find its perimeter ? will​

Answers

Answered by Anonymous
5

Answer:

Answer :

  • ➝ Perimeter of rectangle is 70 m.

\begin{gathered}\end{gathered}

Right Question :

The ratio of sides of a rectangle is 3 : 4. If its area is 300 m², find its perimeter?

\begin{gathered}\end{gathered}

Given :

  • ➝ Radio of side of rectangle = 3:4
  • ➝ Area of rectangle = 300 m².

\begin{gathered}\end{gathered}

To Find :

  • ➝ Perimeter of rectangle

\begin{gathered}\end{gathered}

Using Formula :

  • ➝ Area of rectangle = l × b
  • ➝ Perimeter of rectangle = 2(l + b)

\begin{gathered}\end{gathered}

Solution :

\bull \: \underline{\underline{\sf{\red{Assume,}}}}

  • ➝ Length of rectangle = 3x
  • ➝ Breadth of rectangle = 4x

\bull \: \underline{\underline{\sf{\red{According  \: to \:  the  \: question,}}}}

\dashrightarrow\tt{Area \:  of  \: rectangle = l  \times  b}

\dashrightarrow\tt{300 = 3x \times  4x}

\dashrightarrow\tt{300 = 12{x}^{2}}

\dashrightarrow\tt{{x}^{2}=\dfrac{300}{12} }

\dashrightarrow\tt{{x}^{2}= \cancel{\dfrac{300}{12}}}

\dashrightarrow\tt{{x}^{2}= 25}

\dashrightarrow\tt{x= \sqrt{25} }

\dashrightarrow\tt{x=5 }

  • ➝ Hence, the value of x is 5.

\bull \: \underline{\underline{\sf{\red{Hence,}}}}

  • ➝ Length = 3x = 3×5 = 15 m
  • ➝ Breadth = 4x = 4×5 = 20 m

\bull \: \underline{\underline{\sf{\red{Finding \:  the  \: perimeter  \: of  \: rectangle,}}}}

{\dashrightarrow{\tt{Perimeter_{(Rectangle)} = 2(l + b)}}}

{\dashrightarrow{\tt{Perimeter_{(Rectangle)} = 2(15+20)}}}

{\dashrightarrow{\tt{Perimeter_{(Rectangle)} = 2(35)}}}

{\dashrightarrow{\tt{Perimeter_{(Rectangle)} = 2 \times 35}}}

{\dashrightarrow{\tt{Perimeter_{(Rectangle)} = 70 \: m}}}

  • ➝ Hence, the perimeter of rectangle is 70 m.

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \boxed{\begin{array}{l}\\ \large\dag\quad\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star \: \: \sf Circle = \pi r^2 \\ \\ \star \: \; \sf Square=(side)^2\\ \\ \star\; \; \sf Rectangle=Length\times Breadth \\\\ \star \: \: \sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \: \: \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \: \: \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star \: \: \sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star \: \: \sf Parallelogram =Breadth\times Height\\\\ \star \: \: \sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star \: \: \sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \rule{220pt}{3.5pt}

Similar questions