4. The ratio of two numbers is 8: 5. If 8 is added to the greater number and 5 is
subtracted from the smaller number, the greater number becomes twice the
smaller number. Find the smaller number.
(2) 75
(3) 25
(4945
(1) 15
Answers
Answered by
2
please thanks my answer
Attachments:
Answered by
1
Answer:
Let the two required numbers be 8x and 5x.
Obviously, 8x>5x.
Add 8 to 8x and subtract 5 from 5x.
The given problem states that the result of addition is two times (i.e., twice) the result of the subtraction.
i.e.,
8x+8=2(5x−5)
Now, we have to find x. Distribute 2 over the term 5x-5.
8x+8=2(5x)−2(5)
⟹8x+8=10x−10
Bring x terms to left hand side and constant terms to right hand side.
8x−10x=−10−8
⟹−2x=−18
⟹x=−18−2
⟹x=9
The required numbers are:
8x=8×9=72 and
5x=5×9=45.
(4) 45 is the correct option.
Step-by-step explanation:
Hope this answer will help you.
Similar questions