Math, asked by kashyapabhinw, 6 months ago


4. The sides of a triangle are in the ratio 5: 12: 13, and its perimeter is
150 m. Find the area of the triangle.​

Answers

Answered by meow261
9

 \huge \green{ANSWER❤}

Step-by-step explanation:

Answer is attached in picture.

keep smiling:)

thanks for asking;)

Attachments:
Answered by ScanTxN
53

\red{\bold{\underline{\underline{♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡}}}}

Question

The sides of a triangle are in the ratio 5: 12: 13, and its perimeter is

150 m. Find the area of the triangle.

Solution

Given,

Perimeter of triangle =150m

 

Let the sides of triangle be: a, b and c

 ⠀On dividing 150 m in the ratio 5:12:13, we get

 ⠀a = 5x cm

 ⠀b = 12x cm

 ⠀c = 13x cm

we know that,

 ⠀Perimeter of a triangle = Sum of all sides

 ⠀= a+b+c

 ⠀. ' . 150= 5x+12x+13x

 ⠀ 150=30x

 ⠀ →x=5

Sides are:

 ⠀a = 5x= 25cm

 ⠀b = 12x= 60cm

 ⠀c = 13x = 65cm

Now,

Let a, b and c be the sides of a triangle.

Apply Heron's Formula of find the area of triangle.

 ⠀Area =\sqrt{S(S−a)(S−b)(S−c)}

 ⠀Where, S= \frac{a+b+c}{2}

 ⠀ S= \frac{(25+60+65)}{2}

 ⠀=\frac{150}{2}

 = 75cm

Area = \sqrt{(75(75−20)(75−60)(75−65))}

        ⠀  = \sqrt{(75×50×15×10)}

        ⠀  = 750

. ' . Area of triangle is 750cm²

\red{\bold{\underline{\underline{♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡}}}}

@ScanTxN

Similar questions