Math, asked by shubham2506, 1 year ago

4. The sum of first n terms of three A.P are S1 ,S2 and S3 respectively. The first term of each A.P is 1 and their common difference are 1, 2 and 3 respectively .Prove that S1 +S3= S2​

Answers

Answered by Anonymous
9

 \:\:\:\:  \:  \:  \large\mathfrak{\underline{\huge\mathcal{\bf{\boxed{\boxed{\huge\mathcal{~~QUESTION~~}}}}}}}

The sum of first n terms of three A.P are S1 ,S2 and S3 respectively. The first term of each A.P is 1 and their common difference are 1, 2 and 3 respectively .Prove that S1 +S3= S2

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\huge\mathcal{\bf{\boxed{\boxed{\huge\mathcal{~~AnsweR~~}}}}}}}

_____________________________________________

<font color=red><marquee behavior=alternate>Solution</marquee></font>

For the first AP series....

First term(a)=1

difference (d1)=1

now...

S1(n)=\frac{n(2a + (n - 1)d1)}{2}  \\ \:  \:  \:  \:  \:  =  \frac{n(2 \times 1 + (n - 1)1)}{2}  \\\:  \:  \:  \:  \:   =  \frac{n(n + 1)}{2}  \\ \:  \:  \:  \:  \:  =  \frac{n {}^{2}  + n}{2}

For the second AP series....

First term(a)=1

difference (d2)=2

now...

S2(n)=\frac{n(2a + (n - 1)d2)}{2}  \\\:  \:  \:  \:  \: =  \frac{n(2 \times 1+ (n - 1)2)}{2}  \\\:  \:  \:  \:  \: =  \frac{n(2n )}{2}  \\\:  \:  \:  \:  \:  =  n {}^{2}

For the third AP series....

First term(a)=1

difference (d3)=3

now...

S3(n)=\frac{n(2a + (n - 1)d3)}{2}  \\\:  \:  \:  \:  \:   =  \frac{n(2 \times 1 + (n - 1)3)}{2}  \\\:  \:  \:  \:  \:  =  \frac{n(n - 1)}{2}  \\ \:  \:  \:  \:  \:  =  \frac{n {}^{2}  - n}{2}

Now.....

S1(n)+S3(n)=\frac{n {}^{2}  + n}{2}+ \frac{n {}^{2}  - n}{2}\\\:  \:  \:  \:  \: =  \frac{n {}^{2}  - n+n {}^{2}  +n}{2}  \\\:  \:  \:  \:  \: =n{}^{2}\\\:  \:  \:  \:  \: =S2(n)

therefore.....

 \:\:\:\:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\huge\mathcal{\bf{\boxed{\boxed{\huge\mathcal{S1+S3=S2}}}}}}}

<font color=green><marquee direction="Right">hope this help you

Answered by Yugant1913
14

Step-by-step explanation:

Sum of n terms of first progression :

</p><p>S_{1} =  \frac{n}{2} </p><p>[2.1 + (n - 1).1]

⟹ \frac{n}{2} (2 + n - 1)

⟹ \frac{n(n + 1)}{2}

Sum of n terms of second progression :

S  _{2} =  \frac{n}{2} [2.1 + (n - 1).2]

⟹ \frac{n}{2}  \: [2 + (n - 1).2]

⟹n(1 + n - 1)

⟹ {n}^{2}

Sum of n terms of third progression :

S  _{3} =  \frac{n}{2} [2.1 + (n - 1).3]

⟹ \frac{n}{2} (2 + 3n - 3)

⟹ \frac{n}{2} (3n - 1)

∴ \:  \:  \:  \: S_{1} + S_{3} =  \frac{n(n + 1)}{2}  +  \frac{n(3n - 1)}{2}

⟹ \frac{n}{2}  \times (n + 1 + 3n - 1)

⟹ \frac{n}{2}  \times 4n = 2 {n}^{2}

⟹2S _{2},  \:  \:  \:  \: [∴ S _{2}  = n²]

Proved.

Similar questions