Math, asked by dksubhranshu1234, 3 months ago


4. The sum of two rational numbers is-4/9. If one of them is 13/6, then find the other.

Answers

Answered by mraj67142
2

please mark me as brainlist

Attachments:
Answered by Anonymous
26

\large\sf\underline{Given\::}

  • Sum of two rational numbers = \sf\:\frac{-4}{9}

  • One of the number = \sf\:\frac{13}{6}

\large\sf\underline{To\:find\::}

  • The other rational number = ?

\large\sf\underline{Assumption\::}

  • Let the other rational number be x .

\large\sf\underline{Solution\::}

According to the question :

\sf\:\frac{13}{6}+x=\frac{-4}{9}

  • LCM of 6 and 1

\sf\leadsto\:\frac{13+6x}{6}=\frac{-4}{9}

  • Cross multiplying

\sf\leadsto\:9(13+6x)=6 \times (-4)

  • Multiplying the terms

\sf\leadsto\:117+54x=-24

  • Transposing 117 to the other side it becomes -ve

\sf\leadsto\:54x=-24 -117

\sf\leadsto\:54x=-141

  • Transposing 54 to the other side it goes to denominator

\small{\underline{\boxed{\mathrm\red{\leadsto\:x\:=\:\frac{-141}{54}}}}}

_____________________________

\large\sf\underline{Verifying\::}

\sf\:\frac{13}{6}+x=\frac{-4}{9}

  • Substituting the value of x

\sf\to\:\frac{13}{6}+(\frac{-141}{54})=\frac{-4}{9}

  • LCM of 6 and 54 = 54

\sf\to\:\frac{(13 \times 9) +(-141) }{54}=\frac{-4}{9}

\sf\to\:\frac{117 -141}{54}=\frac{-4}{9}

\sf\to\:\frac{-24}{54}=\frac{-4}{9}

  • Now Cross multiplying

\sf\to\:-24 \times 9= -4 \times 54

\sf\to\:\cancel{-}216= \cancel{-}216

\sf\to\:216=216

\small\fbox\blue{Hence\:Verified}

\dag\:\underline{\sf So\:the\:other\:rational\:number\:is\:\frac{-141}{54}} .

_____________________________

!! Hope it helps !!

Similar questions