Math, asked by jithendrajain22, 3 months ago

4. The value of Sin220°+Sin²70⁰​

Answers

Answered by jayashreepanda510
1

Answer:

Sin 290°. jjvgkvvbgjjvdcvbbn

Answered by riyabksc737
6

Answer:

this is ur answer mate!

Step-by-step explanation:

The value of \left(\sin ^{2} 20^{\circ}+\sin ^{2} 70^{\circ}-\tan ^{2} 45^{\circ}\right)(sin

2

20

+sin

2

70

−tan

2

45

) is 0

To find the value of \sin ^{2} 20^{\circ}+\sin ^{2}(70)^{\circ}-\tan ^{2} 45^{\circ} \rightarrow(1)sin

2

20

+sin

2

(70)

−tan

2

45

→(1)

Finding the value of each term and substituting in equation (1)

\sin ^{2} 70^{\circ}sin

2

70

By using the formula of allied angles

\sin (90-\theta)=\cos \thetasin(90−θ)=cosθ

Find the number which gives 70 while subtracting with 90

\sin ^{2} 70^{\circ}=\sin ^{2}(90-20)^{\circ}sin

2

70

=sin

2

(90−20)

Applying the formula \sin ^{2}(90-20)^{\circ}=\cos ^{2} 20^{\circ} \rightarrow(2)\tan ^{2} 45^{\circ}sin

2

(90−20)

=cos

2

20

→(2)tan

2

45

From the exact values of trigonometric angles the value of \tan 45^{\circ}=1tan45

=1

Therefore, the value of \tan ^{2} 45^{\circ}=\left(1^{2}\right)=1 \rightarrow(3)tan

2

45

=(1

2

)=1→(3)

Substituting equation (2) and (3) in equation (1)

\begin{gathered}\begin{array}{l}{\sin ^{2} 20^{\circ}+\sin ^{2}(70)^{\circ}-\tan ^{2} 45^{\circ}} \\ {=\sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}-1 \rightarrow(4)}\end{array}\end{gathered}

sin

2

20

+sin

2

(70)

−tan

2

45

=sin

2

20

+cos

2

20

−1→(4)

From the trigonometric identities \sin ^{2} \theta+\cos ^{2} \theta=1sin

2

θ+cos

2

θ=1

Therefore \sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}=1sin

2

20

+cos

2

20

=1 using the above identity

Substituting in equation (4)

= 1-1

=0.

Similar questions