Math, asked by ravindra7149, 1 month ago

4. The volume of a cylinder is 2512 cu cm and its height is 12.5 cm. Find the radius of the base.
(\pi = 3.14)

Answers

Answered by vpvp197
8

Step-by-step explanation:

\pi \: r {}^{2}  = 2512 \div 12.5 \\  = 200.96 \\  {r }^{2}  = 200.96 \div 3.14 \\  = 64 \: (r =  \sqrt{64  \:  = 8})

Answered by Anonymous
7

\huge\orange{\boxed{\underline{ANSWER}}}

GIVEN THAT:

➾ The volume of cylinder = 2512 cm3

➾ Height of cylinde (h) = 12.5 cm

FORMULA;

➾ The volume of cylinder(V) = πr2h

where,

• r = radius of the bace of cylinder

• h = Height of cylinder

SOLUTIONS;

➾ The volume of cylinder

&#10230 \:  \: \pi {r}^{2} h = 2512 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ &#10230 \:  \: 3.14 \times  {r}^{2}  \times 12.5 = 2512 \\ &#10230 \:  \: 39.25 \times  {r}^{2}  = 2512 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ &#10230 \:  \:  {r}^{2}  =  \cancel\frac{2512}{39.25}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ &#10230 \:  \:  {r}^{2}  = 64 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ &#10230 \:  \: r =  \sqrt{64}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ &#10230 \:  \: r = 8cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

➾ So the radius of base of cylinder = 8 cm

Similar questions