4) Two lines and AB and CD intersect at O. If AOC + BOD equal 250°, find AOC, AOD,
BOC.
Answers
Answer:
Lets draw the figure first. (To see figure, see file attached below)
∠AOC+∠BOD=250°.
But, ∠BOD=∠AOC (VERTICALLY OPPOSITE ANGLES ARE EQUAL)
Thus, ∠AOC+∠AOC=250°........(∵ ∠BOD=∠AOC)
2∠AOC=250°
∠AOC=250÷2
∠AOC=125°.
Now, we can use linear pair.
∠AOD+∠AOC=180°.........(Linear pair)
∠AOD=125°=180°.......(∵∠AOC=125°)
∠AOD=55°.
And,
∠AOC+∠BOC=180°..............(Linear pair)
125°+∠BOC=180..........(∠AOC=125°)
∠BOC=180-125
∠BOC=55°.
THUS, ∠AOC=125°, ∠AOD=55°, ∠BOC=55°.
HOPE THIS HELPS :D
Question :-
In figure, lines AB and CD intersect at 0. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
Answer :-
Since AB is a straight line,
∴ ∠AOC + ∠COE + ∠EOB = 180°
o r (∠AOC + ∠BOE) + ∠COE = 180° or 70° + ∠COE = 180° [ ∵∠AOC + ∠BOE = 70° (Given)]
or ∠COE = 180° – 70° = 110°
∴ Reflex ∠COE = 360° – 110° = 250°
Also, AB and CD intersect at O.
∴∠COA = ∠BOD [Vertically opposite angles]
But ∠BOD = 40° [Given]
∴ ∠COA = 40°
Also, ∠AOC + ∠BOE = 70°
∴ 40° + ∠BOE = 70° or ∠BOE = 70° -40° = 30°
Thus, ∠BOE = 30° and reflex ∠COE = 250°.
Plz mrk as brainliest ❤