Math, asked by Anonymous, 9 months ago

4. Use Euclid's division lemma to show that the square of any positive integer is either of
the form 3m or 3m + 1 for some integer m.
[Hint: Let x be any positive integer then it is of the form 39, 3q+1 or 3q + 2. Now square
each of these and show that they can be rewritten in the form 3m or 3m +1.]

Answers

Answered by Anonymous
16

Given: Any positive integer

To prove: Any positive integer is in the form of 3q,3q+1,3q+2

Proof:

We know that from Euclid’s division lemma for b= 3

Let us assume that any positive integer ‘n’ be of the form 3q or, 3q+1 or 3q+2.

If n= 3q,

On squaring we get,

⇒ n2= (3q)2 = 9q2

⇒ n2= 3(3q2)

⇒ n2= 3m, where m is some integer [m = 3q2]

If n= 3q+1,

On squaring we get,

⇒ n2= (3q+1)2 = 9q2 + 6q + 1 { Solved using the identity (a+b) 2 = a2 + b2 + 2ab}

⇒ n2= 3(3q2 +2q) + 1

⇒ n2= 3m + 1, where m is some integer [m = 3q2 +2q]

If n= 3q+2,

On squaring we get,

⇒ n2= (3q+2)2 = 9q2 + 12q + 4 { Solved using the identity (a+b) 2 = a2 + b2 + 2ab}

⇒ n2= 3(3q2 + 4q + 1) + 1

⇒ n2= 3m, where m is some integer [m = 3q2 + 4q + 1]

Therefore, the square of any positive integer is of the form 3m or 3m + 1 but not of the form 3m + 2.

Hence proved

Answered by Anonymous
7

Answer:

Let 'a' be any positive integer.

On dividing it by 3 , let 'q' be the quotient and 'r' be the remainder.

such that ,

a = 3q + r , where r = 0 ,1 , 2

When, r = 0

∴ a = 3q

When, r = 1

∴ a = 3q + 1

When, r = 2

∴ a = 3q + 2

When , a = 3q

On squaring both the sides,

When, a = 3q + 1

On squaring both the sides ,

When, a = 3q + 2

On squaring both the sides,

Therefore , the square of any positive integer is either of the form 3m or 3m+1.

HOPE IT HELPS,

PLEASE THANK , FOLLOW AND MARK AS BRAINLIEST.

Similar questions