Math, asked by shivanshsaxena21, 5 months ago

4. Using principle of mathematical induetlon, prove that 1+2 +3+ n =n(n+1) /2
where n is a natural number,​

Answers

Answered by Seafairy
14

Given :

\displaystyle { 1+2+3+...n=\frac{n(n+1)}{2},n\in N.}

To Find :

  • By using principal of mathematical induction prove the given equation.

Solution :

Let the given statement P(n) be defined as

\displaystyle {\sf  1+2+3+...n=\frac{n(n+1)}{2},n\in N.}

Step 1 :-

\sf Put \: n=1 \\\\\sf LHS \: P(1)=1\\\\\sf RHS \:P(1)=\dfrac{1(1+1)}{2}=1\\\\\sf LHS=RHS \:for\:n=1\\\\\sf\therefore \:P(1)\:is\:true

Step 2 :-

Let us assume that the statement is true for (n=k).

\sf i . e ., P(k)\:is\:true

\displaystyle {\sf  1+2+3+...k=\frac{k(k+1)}{2}} is true.

Step 3 :-

\sf P(k+1)=1+2+3+ ... +k+(k+1)\\

\sf \longrightarrow P(k)+k+1\\\\\longrightarrow \sf\dfrac{k(k+1)}{2}+k+1\\\\\longrightarrow \sf\dfrac{k(k+1)+2(k+1)}{2}\\\\\longrightarrow\sf \dfrac{(k+1)(k+2)}{2}\\\\\therefore\sf P(k+1)\:is\:true

Thus if \sf P(k) is true, then \sf P(k+1) is also true.

\sf \therefore P(n) \:is \: true \:for\:all\:n\in N

Hence \displaystyle { \sf1+2+3+...n=\frac{n(n+1)}{2},n\in N.}

Answered by RISH4BH
29

To ProvE :-

  • By the principle of mathematical induction , to Prove that ,

\sf 1 + 2 + 3 + 4 + .. ... + n =\dfrac{n(n+1)}{2}

ProoF :-

The process of mathematical induction is a indirect method which helps us to prove some formulae which cannot be proved by direct methods .

\red{\bigstar}\underline{\textsf{ Principal of Mathematical Induction :- }}

\textsf{ If P(n) is a statement such that , }

  • P(n) is true for n = 1
  • P(n) is true for n = k + 1 , when it's also true for n = k , where \sf k \in \mathbb{N}

Then we can say that by the principal of mathematical induction , the statement is true for all Real Numbers .

\rule{200}2

\sf \to Let \ \blue{P(n)} :  1 + 2 + 3 + 4 + ... .. + n =\dfrac{n(n+1)}{2}

\red{\bigstar}  \textsf{ \textbf{Step 1} :\underline{ Put n = 1 :-}}

Then , LHS = 1 , and

RHS = \sf \dfrac{1+1}{2}(1)=\dfrac{2}{2}=\orange{1} .

\textsf{ $\therefore$ \textbf{ LHS}=\textbf{RHS} . }

\dashrightarrow\textsf{\purple{So P(n) is true for n = \textbf{1}}.}

\rule{200}2

\red{\bigstar} \textsf{ \textbf{Step 2 } : \underline{Assume that P(n) is true for n = k . }}

\to \sf 1 + 2 + 3 + 4 + ... . .. + k = \orange{\dfrac{k(k+1)}{2}}

\to \sf 1 + 2 + 3 + 4 + .. ... . + k + (k + 1 ) = \dfrac{k(k+1)}{2}+(k+1) \qquad \bigg\lgroup \red{\tt Adding\  (k+1) \ both \ sides } \bigg\rgroup

So that :-

 \sf\to (k+1)\bigg( \dfrac{k}{2}+1\bigg) \\\\\sf\to (k+1)\bigg( \dfrac{k+2}{2}\bigg) \\\\\sf\to \dfrac{(k+1)(k+2)}{2} \\\\\sf\to \dfrac{(k+1)(\red{k+1}+1) }{2}

\sf\dashrightarrow \purple{ P(n) \ is \ also \ true \ for \ n = \ k + 1 }

Therefore by the principal of Mathematical Induction we can say that , P(n) is true for all natural numbers .

\rule{200}2

\large\boxed{\pink{\sf\displaystyle\sum^{\tt n}_{\tt{k=1}}=\dfrac{\sf n(n+1)}{\sf 2} \ \sf for \ all \ n \ \in \mathbb{N} }}.

\rule{200}2

Similar questions