Math, asked by ayushsingh3853, 8 months ago

4. Which of the following are APs? If they form an AP. find the common differenced and
write three more terms.
Ference du
(i) 2. 4.8. 16....
(1) 2.5.3.2
2 2.
(iv) - 10.-6.-2.2....
(iii) - 1.2.-3.2.-5.2. - 7.2....
(v) 3, 3 + V3.3 +2 2.3 + 3V3....
(vi) 0.2.0.22.0.222.0.2222..
(vii) 0.-4.-8.-12....
(viii)
1 1 1 1
2 2
2​

Answers

Answered by naiteek5124
1

Answer:

(i) 2,4,8,16 …

Here,

a2 - a1 = 4 - 2 = 2

a3 - a2 = 8 - 4 = 4

a4 - a3 = 16 - 8 = 8

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(ii) 2, 5/2, 3, 7/2 ....

Here,

a2 - a1 = 5/2 - 2 = 1/2

a3 - a2 = 3 - 5/2 = 1/2

a4 - a3 = 7/2 - 3 = 1/2

⇒ an+1 - an is same every time.

Therefore, d = 1/2 and the given numbers are in A.P.

Three more terms are

a5 = 7/2 + 1/2 = 4

a6 = 4 + 1/2 = 9/2

a7 = 9/2 + 1/2 = 5

(iii) -1.2, - 3.2, -5.2, -7.2 …

Here,

a2 - a1 = ( -3.2) - ( -1.2) = -2

a3 - a2 = ( -5.2) - ( -3.2) = -2

a4 - a3 = ( -7.2) - ( -5.2) = -2

⇒ an+1 - an is same every time.

Therefore, d = -2 and the given numbers are in A.P.

Three more terms are

a5 = - 7.2 - 2 = - 9.2

a6 = - 9.2 - 2 = - 11.2

a7 = - 11.2 - 2 = - 13.2

(iv) -10, - 6, - 2, 2 …

Here,

a2 - a1 = (-6) - (-10) = 4

a3 - a2 = (-2) - (-6) = 4

a4 - a3 = (2) - (-2) = 4

⇒ an+1 - an is same every time.

Therefore, d = 4 and the given numbers are in A.P.

Three more terms are

a5 = 2 + 4 = 6

a6 = 6 + 4 = 10

a7 = 10 + 4 = 14

(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2

Here,

a2 - a1 = 3 + √2 - 3 = √2

a3 - a2 = (3 + 2√2) - (3 + √2) = √2

a4 - a3 = (3 + 3√2) - (3 + 2√2) = √2

⇒ an+1 - an is same every time.

Therefore, d = √2 and the given numbers are in A.P.

Three more terms are

a5 = (3 + √2) + √2 = 3 + 4√2

a6 = (3 + 4√2) + √2 = 3 + 5√2

a7 = (3 + 5√2) + √2 = 3 + 6√2

(vi) 0.2, 0.22, 0.222, 0.2222 ….

Here,

a2 - a1 = 0.22 - 0.2 = 0.02

a3 - a2 = 0.222 - 0.22 = 0.002

a4 - a3 = 0.2222 - 0.222 = 0.0002

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(vii) 0, -4, -8, -12 …

Here,

a2 - a1 = (-4) - 0 = -4

a3 - a2 = (-8) - (-4) = -4

a4 - a3 = (-12) - (-8) = -4

⇒ an+1 - an is same every time.

Therefore, d = -4 and the given numbers are in A.P.

Three more terms are

a5 = -12 - 4 = -16

a6 = -16 - 4 = -20

a7 = -20 - 4 = -24

(viii) -1/2, -1/2, -1/2, -1/2 ....

Here,

a2 - a1 = (-1/2) - (-1/2) = 0

a3 - a2 = (-1/2) - (-1/2) = 0

a4 - a3 = (-1/2) - (-1/2) = 0

⇒ an+1 - an is same every time.

Therefore, d = 0 and the given numbers are in A.P.

Three more terms are

a5 = (-1/2) - 0 = -1/2

a6 = (-1/2) - 0 = -1/2

a7 = (-1/2) - 0 = -1/2

(ix) 1, 3, 9, 27 …

Here,

a2 - a1 = 3 - 1 = 2

a3 - a2 = 9 - 3 = 6

a4 - a3 = 27 - 9 = 18

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(x) a, 2a, 3a, 4a …

Here,

a2 - a1 = 2a - a = a

a3 - a2 = 3a - 2a = a

a4 - a3 = 4a - 3a = a

⇒ an+1 - an is same every time.

Therefore, d = a and the given numbers are in A.P.

Three more terms are

a5 = 4a + a = 5a

a6 = 5a + a = 6a

a7 = 6a + a = 7a

(xi) a, a2, a3, a4 …

Here,

a2 - a1 = a2 - a = (a - 1)

a3 - a2 = a3 - a2 = a2 (a - 1)

a4 - a3 = a4 - a3 = a3(a - 1)

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(xii) √2, √8, √18, √32 ...

Here,

a2 - a1 = √8 - √2 = 2√2 - √2 = √2

a3 - a2 = √18 - √8 = 3√2 - 2√2 = √2

a4 - a3 = 4√2 - 3√2 = √2

⇒ an+1 - an is same every time.

Therefore, d = √2 and the given numbers are in A.P.

Three more terms are

a5 = √32 + √2 = 4√2 + √2 = 5√2 = √50

a6 = 5√2 +√2 = 6√2 = √72

a7 = 6√2 + √2 = 7√2 = √98

(xiii) √3, √6, √9, √12 ...

Here,

a2 - a1 = √6 - √3 = √3 × 2 -√3 = √3(√2 - 1)

a3 - a2 = √9 - √6 = 3 - √6 = √3(√3 - √2)

a4 - a3 = √12 - √9 = 2√3 - √3 × 3 = √3(2 - √3)

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(xiv) 12, 32, 52, 72 …

Or, 1, 9, 25, 49 …..

Here,

a2 − a1 = 9 − 1 = 8

a3 − a2 = 25 − 9 = 16

a4 − a3 = 49 − 25 = 24

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(xv) 12, 52, 72, 73 …

Or 1, 25, 49, 73 …

Here,

a2 − a1 = 25 − 1 = 24

a3 − a2 = 49 − 25 = 24

a4 − a3 = 73 − 49 = 24

i.e., ak+1 − ak is same every time.

⇒ an+1 - an is same every time.

Therefore, d = 24 and the given numbers are in A.P.

Three more terms are

a5 = 73+ 24 = 97

a6 = 97 + 24 = 121

a7 = 121 + 24 = 145

Similar questions