Math, asked by tanmayi0130, 9 months ago

4÷ whole root of 6+ √20- 2÷ whole root of 8+ √60- 2÷ whole root of 4-√12=

Answers

Answered by pulakmath007
3

SOLUTION

TO SIMPLIFY

 \displaystyle \sf{ \frac{4}{ \sqrt{6 +  \sqrt{20} }} -  \frac{2}{ \sqrt{ 8 +  \sqrt{60} }}  -  \frac{2}{ \sqrt{ 4 -  \sqrt{12} }  }}

EVALUATION

 \displaystyle \sf{ \frac{4}{ \sqrt{6 +  \sqrt{20} }} -  \frac{2}{ \sqrt{ 8 +  \sqrt{60} }}  -  \frac{2}{ \sqrt{ 4 -  \sqrt{12} }  }}

 \displaystyle \sf{  = \frac{4}{ \sqrt{6 +  \sqrt{4 \times 5} }} -  \frac{2}{ \sqrt{ 8 +  \sqrt{4 \times 15} }}  -  \frac{2}{ \sqrt{ 4 -  \sqrt{4 \times 3} }  }}

 \displaystyle \sf{  = \frac{4}{ \sqrt{6 +  2\sqrt{ 5} }} -  \frac{2}{ \sqrt{ 8 +  2\sqrt{ 15} }}  -  \frac{2}{ \sqrt{ 4 -  2\sqrt{ 3} }  }}

 \displaystyle \sf{  = \frac{4}{ \sqrt{5 + 1 +  2\sqrt{ 5} }} -  \frac{2}{ \sqrt{ 5 + 3 +  2\sqrt{ 15} }}  -  \frac{2}{ \sqrt{ 3 + 1 -  2\sqrt{ 3} }  }}

 \displaystyle \sf{  = \frac{4}{ \sqrt{ {( \sqrt{5}  + 1)}^{2} }} -  \frac{2}{ \sqrt{  {( \sqrt{5}  +  \sqrt{3} )}^{2} }}  -  \frac{2}{ \sqrt{  {( \sqrt{3}   -  1)}^{2} }  }}

 \displaystyle \sf{  = \frac{4}{ ( \sqrt{5}  + 1)} -  \frac{2}{   {( \sqrt{5}  +  \sqrt{3} ) }}  -  \frac{2}{  {( \sqrt{3}   -  1) }  }}

 \displaystyle \sf{  = \frac{4( \sqrt{5}  - 1)}{ ( \sqrt{5}  + 1)( \sqrt{5}  - 1)} -  \frac{2( \sqrt{5} -  \sqrt{3}  )}{   {( \sqrt{5}  +  \sqrt{3} )( \sqrt{5}  -  \sqrt{3} ) }}  -  \frac{2( \sqrt{3} + 1 )}{  {( \sqrt{3}   -  1)( \sqrt{3} + 1 ) }  }}

 \displaystyle \sf{  = \frac{4( \sqrt{5}  - 1)}{ ( 5 - 1)} -  \frac{2( \sqrt{5} -  \sqrt{3}  )}{   {( 5 - 3) }}  -  \frac{2( \sqrt{3} + 1 )}{  {(3 - 1) }  }}

 \displaystyle \sf{  = \frac{4( \sqrt{5}  - 1)}{ 4} -  \frac{2( \sqrt{5} -  \sqrt{3}  )}{   {2 }}  -  \frac{2( \sqrt{3} + 1 )}{  {2 }  }}

 \displaystyle \sf{  = ( \sqrt{5}  - 1) -  ( \sqrt{5} -  \sqrt{3}  ) -  ( \sqrt{3} + 1 )}

 \displaystyle \sf{  = \sqrt{5}  - 1 -   \sqrt{5}  +  \sqrt{3} -  \sqrt{3}  -  1 }

 \displaystyle \sf{  =  - 2}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions