4. Write any three types of rows and columns.
Answers
Explanation:
In linear algebra, a column vector or column matrix is an m × 1 matrix, that is, a matrix consisting of a single column of m elements,
{\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}\,.} {\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}\,.}
Similarly, a row vector or row matrix is a 1 × m matrix, that is, a matrix consisting of a single row of m elements[1]
{\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}&x_{2}&\dots &x_{m}\end{bmatrix}}\,.} {\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}&x_{2}&\dots &x_{m}\end{bmatrix}}\,.}
Throughout, boldface is used for the row and column vectors. The transpose (indicated by T) of a row vector is a column vector
{\displaystyle {\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}^{\rm {T}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}\,,} \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix}^{\rm T} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \,,
and the transpose of a column vector is a row vector