4. Write the term i-35 in the form of a + ib.
Answers
Answer:
Answer:
i^{-35}=0+ii
−35
=0+i
Step-by-step explanation:
Given : Expression i^{-35}i
−35
To find : Express expression in the form of a+ib ?
Solution :
Write expression as,
i^{-35}=i^{-34-1}i
−35
=i
−34−1
i^{-35}=i^{-34}\times i^{-1}i
−35
=i
−34
×i
−1
i^{-35}=(i^2)^{-17}\times i^{-1}i
−35
=(i
2
)
−17
×i
−1
We know that, i^2=-1i
2
=−1
i^{-35}=(-1)^{-17}\times i^{-1}i
−35
=(−1)
−17
×i
−1
i^{-35}=\frac{1}{(-1)^{17}}\times i^{-1}i
−35
=
(−1)
17
1
×i
−1
i^{-35}=\frac{1}{-1}\times i^{-1}i
−35
=
−1
1
×i
−1
i^{-35}=-i^{-1}i
−35
=−i
−1
i^{-35}=-\frac{1}{i}i
−35
=−
i
1
Multiply and divide by i,
i^{-35}=-\frac{1}{i}\times \frac{i}{i}i
−35
=−
i
1
×
i
i
i^{-35}=-\frac{i}{i^2}i
−35
=−
i
2
i
i^{-35}=-\frac{i}{-1}i
−35
=−
−1
i
i^{-35}=ii
−35
=i
i^{-35}=0+ii
−35
=0+i
i.e. In the form of a+ib i^{-35}=0+ii
−35
=0+i
Where, a=0 and b=1.
Step-by-step explanation: