Math, asked by atishaybest25, 11 months ago

4^x=0.008^y=10^z ...Find the relation between x,y,z

Answers

Answered by Swarup1998
30

\quad\quad \bold{\frac{1}{2x}=\frac{1}{3y}+\frac{1}{z}}

Step-by-step explanation:

Let us take

\quad\quad 4^{x}=0.008^{y}=10^{z}=k\:(\neq 0)

Taking the first term, we get

\quad 4^{x}=k

\to (2^{2})^{x}=k

\to 2=k^{\frac{1}{2x}}\quad ...(i)

Taking the third term, we get

\quad 10^{z}=k

\to 10=k^{\frac{1}{z}}\quad ...(ii)

Taking the second term, we get

\quad 0.008^{y}=k

\to \big(\frac{8}{1000}\big)^{y}=k

\to \big(\frac{2}{10}\big)^{3y}=k

\to \big(\frac{k^{\frac{1}{2x}}}{k^{\frac{1}{z}}}\big)^{3y}=k\quad [by\:(i),\:(ii)]

\to k^{(\frac{1}{2x}-\frac{1}{z})3y}=k

Equating powers of k from both sides, we get

\quad \big(\frac{1}{2x}-\frac{1}{z}\big)\:3y=1

\to \frac{1}{2x}-\frac{1}{z}=\frac{1}{3y}

\to \boxed{\frac{1}{2x}=\frac{1}{3y}+\frac{1}{z}}

This is the required relation between x, y and z.

Related question:

If x = log(a + b), y = log(a - b), z = log(a² - b²). Then what is the relation between x, y, z? - https://brainly.in/question/13203506

Answered by sanjeevk28012
6

Given as :

4^{x}  = 0.008^{y} = 10^{z}

To Find :

The the relation between x , y , z

Solution :

4^{x}  = 0.008^{y} = 10^{z}

2^{2x} = 0.2^{3y} = 10^{z}

Let   2^{2x} = 0.2^{3y} = 10^{z}  = k

So,  2^{2x} = k

Or,  2 = k^{\dfrac{1}{2x}}       ...........1

Again

0.2^{3y}   = k

Or,  0.2 = k^{\dfrac{1}{3y}}         ..........2

Similarly

10^{z}  = k

Or,  10 = k^{\dfrac{1}{z}}          ......3

From, eq 1 and 3

 \dfrac{2}{10}  = \dfrac{k^{\dfrac{1}{2x}}}{k^{\frac{1}{z}}}

Or,  0.2 = k(^{ \dfrac{1}{2x} -\dfrac{1}{z} })      .........4

Now, From eq 2 and 4

k(^{ \dfrac{1}{2x} -\dfrac{1}{z} })   =   k^{\dfrac{1}{3y}}      

removing base k from both side

∴  \dfrac{1}{2x} - \dfrac{1}{z} = \dfrac{1}{3y}

Or,  \dfrac{1}{2x}  = \dfrac{1}{3y} + \dfrac{1}{z}

Hence, The relation between x y  z is  \dfrac{1}{2x}  = \dfrac{1}{3y} + \dfrac{1}{z}  Answer

Similar questions