Math, asked by vaishnavi0758, 3 months ago

4^x-1×(0.5)^3-2x =(1/8)^x Solve for x​

Answers

Answered by kimrose1512
2

Answer:

The solution of the expression is x=\frac{5}{7}x=

7

5

Step-by-step explanation:

Given : Expression 4^{x-1}\times (0.5)^{3-2x}=(\frac{1}{8})^x4

x−1

×(0.5)

3−2x

=(

8

1

)

x

To find : Solve the expression ?

Solution :

4^{x-1}\times (0.5)^{3-2x}=(\frac{1}{8})^x4

x−1

×(0.5)

3−2x

=(

8

1

)

x

We solve the expression,

(2^2)^{x-1}\times (\frac{1}{2})^{3-2x}=(\frac{1}{2^3})^x(2

2

)

x−1

×(

2

1

)

3−2x

=(

2

3

1

)

x

(2)^{2x-2}\times (2^{-1})^{3-2x}=2^{-3x}(2)

2x−2

×(2

−1

)

3−2x

=2

−3x

(2)^{2x-2}\times 2^{2x-3}=2^{-3x}(2)

2x−2

×2

2x−3

=2

−3x

(2)^{2x-2+2x-3}=2^{-3x}(2)

2x−2+2x−3

=2

−3x

(2)^{4x-5}=2^{-3x}(2)

4x−5

=2

−3x

(2)^{4x}\times 2^{-5}=2^{-3x}(2)

4x

×2

−5

=2

−3x

\frac{(2)^{4x}}{2^{5}}=2^{-3x}

2

5

(2)

4x

=2

−3x

\frac{(2)^{4x}}{2^{-3x}}=2^{5}

2

−3x

(2)

4x

=2

5

(2)^{4x+3x}=2^{5}(2)

4x+3x

=2

5

(2)^{7x}=2^{5}(2)

7x

=2

5

On comparing the powers as base are same,

7x=57x=5

x=\frac{5}{7}x=

7

5

Therefore, The solution of the expression is x=\frac{5}{7}x=

7

5

Step-by-step explanation:

Hi !!

Hope it helps you !!

Answered by shalinikumari10000
1

hope it will help you to understand...

Attachments:
Similar questions