4^(x+1)+4^(1-x)=10 solve for x by quadratic formula............... please
Answers
Given equation :
⇒ 4^( x + 1 ) + 4^( 1 - x ) = 10
Let's recall laws of exponents to be used here
- a^( m + n ) = a^m × a^n
- a^( m - n ) = a^m / a^n
Hence the given equation becomes
Substituting 4^x = y in the above equation
⇒ 4y + 4/y = 10
Multiplying every term by ' y '
⇒ 4y² + 4 = 10y
⇒ 4y² - 10y + 4 = 0
Dividing throughout the equation by ' 2 '
⇒ 4y²/2 - 10y/2 + 4/2 = 0
⇒ 2y² - 5y + 2 = 0
Comparing 2y² - 5y + 2 with ay² + by + c = 0 we get
- a = 2
- b = - 5
- c = 2
Using Quadratic formula
⇒ y = ( 5 + 3 ) / 4 OR y = ( 5 - 3 )/ 4
⇒ y = 8/4 OR y = 2/4
⇒ y = 2 OR y = 1/2
But y = 4^x
⇒ 4^x = 2 OR 4^x = 1/2
⇒ ( 2² )ˣ = 2 OR ( 2² )ˣ = 1/2
Since 1 / aⁿ = a⁻ ⁿ
⇒ 2^( 2x ) = 2¹ OR 2^( 2x ) = 2⁻ ¹
Since Bases are equal we can equate exponents
⇒ 2x = 1 OR 2x = - 1
⇒ x = 1/2 OR x = - 1/2
∴ the roots of the equations are 1/2 and - 1/2.
Step-by-step explanation:
Answer:
Let,
p=2 ,1/2.