Math, asked by saudaminimallick432, 11 months ago

4 x^2 y - 9 y^3 factorise​

Answers

Answered by rishu6845
5

Answer:

\blue{\boxed{\large{y \: ( \: 2x + 3y \: ) \:  \: ( \: 2x - 3y \: )}}}

Step-by-step explanation:

\underline{\bold{To \: find}} =  > factors \: of \:  \: (4 {x}^{2} y - 9 {y}^{3} )

\underline{\bold{Concept \: used}} =  >  \\ 1) \: 4 = 2 \times 2 =  {2}^{2}

2) \: 9 = 3 \times 3 \:  =  {3}^{2}

3) \:  {a}^{2}  -  {b}^{2}  \:  = ( \: a + b \: ) \: ( \: a - b \: )

\underline{\bold{Solution}} =  >  \\ 4 {x}^{2} y - 9 {y}^{3}  \\ taking \: y \: common \: from \: both \: terms \\  = y \: ( \: 4 {x}^{2}  \:  - 9 {y}^{2}  \: ) \\  = y \: ( {2}^{2}  \:  {x}^{2}  -  {3}^{2}  \:  {y}^{2} ) \\  = y \: ( \:  {( \: 2x \: )}^{2}  -  {( \: 3y \: )}^{2} ) \\  now \: applying \: ( {a}^{2}  -  {b}^{2} ) = (a + b) \: (a - b) \\  = y \: (2x + 3y) \: (2x - 3y)

\underline{\bold{Additional \: information}} =  >  \\ 1)\blue{ {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab} \\ 2) \red{{(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab} \\ 3)\green{( {a}^{3}  +  {b}^{3}  )= (a + b) \: ( {a}^{2}  +  {b}^{2}  - ab) }\\ 4)\red{( {a}^{3}  -  {b}^{3})  = (a - b) \: ( {a}^{2}  +  {b}^{2}  + ab \: )}

Answered by 2005shalinikumari
1

Answer:

i hope this may be correct answer

plz mark my answer as brainliest answer

Attachments:
Similar questions