Math, asked by harmansaini8735, 6 months ago

4(x+3y)³ + 12(x+3y)²​

Answers

Answered by kavinsiddhu758
1

Answer:

4\left(x+3y\right)^3+12\left(x+3y\right)^2\\= 4\left(x^3+9x^2y+27xy^2+27y^3\right)+12\left(x+3y\right)^2\\= 4\left(x^3+9x^2y+27xy^2+27y^3\right)+12\left(x^2+6xy+9y^2\right)\\= 4x^3+36x^2y+108xy^2+108y^3+12\left(x^2+6xy+9y^2\right)\\= 4x^3+36x^2y+108xy^2+108y^3+12x^2+72xy+108y^2

MARK ME AS BRAINLIEST !!

Answered by Flaunt
82

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Before solving question look at this identities :

\sf {\boxed{ {(x +y)}^{2}  =  {x}^{2}  +  {y}^{2}  +2xy}}

 \sf\boxed{{(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3 {x}^{2} y + 3x {y}^{2}}

 \sf =  > 4[( {x)}^{3}  +  {(3y)}^{3}  + 3 {x}^{2} y + 3x {(3y)}^{2} ]+ 12[{x}^{2}  +  {(3y)}^{2}  + 2(x)(3y)]

 \sf =  > 4[{x}^{3}  + 2 7{y}^{3}  + 9 {x}^{2} y + 27x {y}^{2} ]+ 12( {x}^{2}  + 9 {y}^{2}  + 6xy)

 \sf =  > 4 {x}^{3}  + 108 {y}^{3}  + 36 {x}^{2} y + 108x {y}^{2}  + 12 {x}^{2}  + 108 {y}^{2}  + 72xy

\sf  =  > 4 {x}^{3}  + 108 {y}^{3}  + 108x {y}^{2}  + 108 {y}^{2}  + 36 {x}^{2} y + 12 {x}^{2}  + 72xy

Extra information=>

Other Identities:

\sf \bold{\boxed{ {(x -y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}}

 \sf \boxed{{x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} )}

\sf \bold{\boxed{(x + y)(x  + z) =  {x}^{2}  + (y+ z)x + yz}}

\bold{\boxed{ {(x -y)}^{3}  =  {x}^{3}  +  {y}^{3}  -3xy[x-y]}}

\sf \bold{\boxed{(x + a)(x - b) =  {x}^{2}  + (a - b)x - ab}}

\sf \bold{\boxed{(x - a)(x - b) =  {x}^{2}  - (a + b)x + ab}}

Similar questions