Math, asked by parveengargadv, 1 year ago

4^x -4^x-1 =24 find x​

Answers

Answered by Shreya091
86

\huge\star{\mathfrak{\underline{\red{QueStion}}}}

\large\tt\ 4^x \: - \: 4^{x \: - \: 1} \: = \: 24

\huge\star{\mathfrak{\underline{\red{AnSwEr}}}}

Step - by - step - explanation ;

\large\leadsto\tt\ 4^x \: - \: 4^{x \: - \: 1} \: = \: 24

\large\leadsto\tt\ 4^x \: - \: 4^x \times\ 4^{-1} \: = \: 24

Taking \tt\ 4^x common;

\large\leadsto\tt\ 4^x ( 1 \: - 4^{-1} ) \: = \: 24

\large\leadsto\tt\ 4^x ( 1 \: - \: \frac{1}{4} ) \: = \: 24

\large\leadsto\tt\ 4^x ( \frac{4 -3}{4} ) \: = \: 24

\large\leadsto\tt\ 4^x ( \frac{3}{4} ) \: = \: 24

\large\leadsto\tt\ 4^x \: = \: \frac{ 24 \times\ 4 }{3}

\large\leadsto\tt\ 4^x \: = \: 32

Now \tt\ 4^x \: = \: 2^{2x} and \tt\ 32 \: = \: 2^5

So consitute it ;

\large\leadsto\tt\ 2^{2x} \: = \: 2^5

Comparing power both sides ;

\large\leadsto\tt\ 2x \: = \: 5

\large\leadsto\tt\ x \: = \: \frac{5}{2}

Answered by arshbbcommander
15

\huge\star{\bf{\underline{\green{AnSwEr:-}}}}

Step - by - step - explanation :-

\large\to\sf\ 4^x \: - \: 4^{x \: - \: 1} \: = \: 24

\large\to\sf\ 4^x \: - \: 4^x \times\ 4^{-1} \: = \: 24

\large\to\sf\ 4^x ( 1 \: - 4^{-1} ) \: = \: 24

\large\to\sf\ 4^x ( 1 \: - \: \frac{1}{4} ) \: = \: 24

\large\to\sf\ 4^x ( \frac{4 -3}{4} ) \: = \: 24

\large\to\sf\ 4^x ( \frac{3}{4} ) \: = \: 24

\large\to\sf\ 4^x \: = \: \frac{ 24 \times\ 4 }{3}

\large\to\sf\ 4^x \: = \: 32

\large\to\sf\ 2^{2x} \: = \: 2^5

Comparing power both sides ;

\large\to\sf\ 2x \: = \: 5

\large\to\sf\ x \: = \: \frac{5}{2}

Similar questions