Math, asked by torral6820, 1 year ago

4 x square - 4 a square x + a to the power 4 minus b to the power 4 is equal to zero solve

Answers

Answered by michael79
2

Tip:

Recall the concept of algebraic identities

(a-b)^2=a^2-2ab+b^2

a^2-b^2=(a+b)(a-b)

Given: 4x^2-4a^2x+a^4-b^4=0

Explanation:

The equation is 4x^2-4a^2x+a^4-b^4=0

Using the identity, (a-b)^2=a^2-2ab+b^2, the equation can be written as

\implies (2x-a^2)^2-b^4=0

This can be written as

\implies (2x-a^2)^2-(b^2)^2=0

Using the identity a^2-b^2=(a+b)(a-b)

\implies (2x-a^2+b^2)(2x-a^2-b^2)=0

\implies (2x-a^2+b^2)=0,(2x-a^2-b^2)=0

When, (2x-a^2+b^2)=0,

\implies 2x=a^2-b^2

\implies x=\frac {a^2-b^2}{2}

When, \implies (2x-a^2-b^2)=0,

\implies 2x=a^2+b^2

\implies x=\frac {a^2+b^2}{2}

Hence, the value of x=\frac {a^2-b^2}{2}, x=\frac {a^2+b^2}{2}

Answered by pulakmath007
12

The required solution is

 \boxed{ \:  \: \displaystyle \bf \: x = \frac{{a}^{2}   -   {b}^{2} }{2}, \frac{{a}^{2}  +  {b}^{2} }{2} \:  \: }

Given :

The equation

\displaystyle \sf{ 4 {x}^{2}   - 4 {a}^{2} x + ( {a}^{4} -  {b}^{4} ) = 0 }

To find :

The value of x

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{ 4 {x}^{2}   - 4 {a}^{2} x + ( {a}^{4} -  {b}^{4} ) = 0 }

Step 2 of 2 :

Find the value of x

\displaystyle \sf{ 4 {x}^{2}   - 4 {a}^{2} x + ( {a}^{4} -  {b}^{4} ) = 0 }

\displaystyle \sf{ \implies }  4 {x}^{2}   - 4 {a}^{2} x +  {a}^{4} -  {b}^{4}  = 0

\displaystyle \sf{ \implies } {(2x)}^{2}   - 2.2x. {a}^{2}  +  {( {a}^{2} )}^{2} -  {b}^{4}  = 0

\displaystyle \sf{ \implies } {(2x -  {a}^{2} )}^{2}-  {b}^{4}  = 0

\displaystyle \sf{ \implies } {(2x -  {a}^{2} )}^{2}-  {( {b}^{2} )}^{2}  = 0

\displaystyle \sf{ \implies } (2x -  {a}^{2}  +  {b}^{2} )(4x -  {a}^{2}  -  {b}^{2} )  = 0

Now 2x - a² + b² = 0 gives

\displaystyle \sf{2x =  {a}^{2}  -  {b}^{2}   }

\displaystyle \sf{ \implies x =  \frac{{a}^{2}  -  {b}^{2} }{2} }

Again 2x - a² - b² = 0 gives

\displaystyle \sf{2x =  {a}^{2} +  {b}^{2}   }

\displaystyle \sf{ \implies x =  \frac{{a}^{2}  +  {b}^{2} }{2} }

Hence the required solution is

\displaystyle \sf \: x = \frac{{a}^{2}   -   {b}^{2} }{2}, \frac{{a}^{2}  +  {b}^{2} }{2}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is?

https://brainly.in/question/21062028

2.Find the roots of the quadratic equation 6x2 +5x + 1 =0 by method of completing the squares.

https://brainly.in/question/30446963

Similar questions