4/x+y=2/x-y=5, 25 /x+y-3/x-y=1 solve with steps
Answers
Answer:To solve this
Let
\frac{1}{x + y} = a \\ \\ \frac{1}{x - y} = b \\ \\
Substitute these values to the given equations
40a + 2b = 2 \\ \\ or \\ \\ 20a + b = 1 \: \: \: ...eq1 \\ \\ 25a - 3b = 1 \: \: \: eq2 \\ \\
multiply equation 1 by 3 and subtract both equations
60a + 3b = 3 \\ 25a - 3b = 1 \\ - - - - - - \\ 85a = 4 \\ \\ a = \frac{4}{85} \\ \\ 20 \times \frac{4}{85} + b = 1 \\ \\ b = 1 - \frac{80}{85} \\ \\ b = \frac{5}{85} = \frac{1}{19} \\ \\
put these values to
\frac{1}{x + y} = \frac{4}{85} \\ \\ \frac{1}{x - y} = \frac{1}{19} \\ \\ 4x + 4y = 85 \\ 4x - 4y = 76 \\ \\ solve \: these \: two \: \\ 8x = 161 \\ \\ x = \frac{161}{8} \\ \\ y =\frac{9}{8}
Hope it helps you
Step-by-step explanation: