40 cosec theta is equal to 41,then cos theta
Answers
Answered by
2
PLEASE MARK MY ANSWER AS BRAINLEAST
Given: 9 sin θ + 40 cos θ= 41
Given: 9 sin θ + 40 cos θ= 41 ⇒ 9 sin θ = 41 – 40 cosθ
Given: 9 sin θ + 40 cos θ= 41 ⇒ 9 sin θ = 41 – 40 cosθ …(i) Squaring both sides, we get
Given: 9 sin θ + 40 cos θ= 41 ⇒ 9 sin θ = 41 – 40 cosθ …(i) Squaring both sides, we get ⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab]
Given: 9 sin θ + 40 cos θ= 41 ⇒ 9 sin θ = 41 – 40 cosθ …(i) Squaring both sides, we get ⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab] ⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ ⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ ⇒ 1681cos2 θ –3280cos θ +1600 = 0
Given: 9 sin θ + 40 cos θ= 41 ⇒ 9 sin θ = 41 – 40 cosθ …(i) Squaring both sides, we get ⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab] ⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ ⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ ⇒ 1681cos2 θ –3280cos θ +1600 = 0 ⇒ (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0
Given: 9 sin θ + 40 cos θ= 41 ⇒ 9 sin θ = 41 – 40 cosθ …(i) Squaring both sides, we get ⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab] ⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ ⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ ⇒ 1681cos2 θ –3280cos θ +1600 = 0 ⇒ (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0 ⇒ (41cos θ – 40 )2 = 0
Similar questions