40 cot A - 9 = 0 , find the value of 15 tan² A + sec² A
Answers
Answered by
0
Answer:
plzz marks as brainliest
Step-by-step explanation:
If 15 tan^2 x + 4sec^2 x = 23, then what is the value of (sec x + cosec x) ^2 - sin^2 x?
GIVEN: 15 tan² x + 4sec²x = 23
TO FIND: ( sec x+ cosec x)² - sin²x = ?
Since, tan² x + 1 = sec²x ( fundamental identity)
=> tan² x = sec²x -1
Since, 15 tan²x + 4sec²x = 23
=> 15( sec²x -1) + 4sec²x = 23
=> 19sec²x - 15 = 23
=> 19sec² x = 38
=> sec² x = 2
=> sec x = √2 ………….(1) ( ie hypotenuse= √2, adjacent side= 1, => opposite side= 1)
=> cosec x= √2 ………… (2)
& sin x = 1/√2 ……….. (3)
So, ( secx + cosecx )² - sin² x
= ( √2 + √2)² - 1/2
= (2√2)² - 1/2
= 8 - 1/2
= 15/2
Similar questions