40. Find two parts
41. Find the ratio in which the line segment joining the points (-3, 10) and (6,-8)
is divided by (-1, 6).
Answers
Answer:
Answer:-
Given:-
( - 1 , 6) divided the line segment joining the points ( - 3 , 10) & (6 , - 8).
Let , the ratio in which the line segment divided be m : n.
Using section formula;
i.e.,
The co - ordinates of a point divided the line segment joining the points (x₁ , y₁) & (x₂ , y₂) in the ratio m : n are;
\boxed {\sf \: (x \: ,\: y) = \bigg( \dfrac{mx_2 + nx_1}{m + n} \: \: ,\: \: \dfrac{my_2 + ny_1}{mn} \bigg)}(x,y)=(m+nmx2+nx1,mnmy2+ny1)
Let,
x = - 1
y = 6
x₁ = - 3
y₁ = 10
x₂ = 6
y₂ = - 8
Hence,
\begin{gathered} \implies \sf \: ( - 1 \: , \: 6) = \bigg( \frac{m(6) + n( - 3)}{m + n} \: \: ,\: \: \frac{m( - 8) + n(10)}{m + n} \bigg) \\ \\ \\ \implies \sf \: ( - 1 \: , \: 6) = \bigg( \frac{6m - 3n}{m + n} \: \: ,\: \: \frac{ - 8m+ 10n}{m + n} \bigg) \\ \\ \end{gathered}⟹(−1,6)=(m+nm(6)+n(−3),m+nm(−8)+n(10))⟹(−1,6)=(m+n6m−3n,m+n−8m+10n)
On comparing both sides we get;
\begin{gathered} \implies \sf \: - 1 = \frac{6m - 3n}{m + n} \\ \\ \\ \implies \sf \: - m - n = 6m - 3n \\ \\ \\ \implies \sf \: - n + 3n = 6m + m \\ \\ \\ \implies \sf \:2n = 7m \\ \\ \\ \implies \sf \: \frac{2}{7} \times n = m \\ \\ \\ \implies \sf \: \frac{2}{7} = \frac{m}{n} \\ \\ \\ \implies \boxed{\sf \:m :n = 2 : 7}\end{gathered}⟹−1=m+n6m−3n⟹−m−n=6m−3n⟹−n+3n=6m+m⟹2n=7m⟹72×n=m⟹72=nm⟹m:n=2:7
∴ The ratio in which the line segment is divided is 2 : 7.