40.
sin47°+sin610-sin11-sin25°
170
B) cos7°
C)
Answers
Answered by
0
Answer:
B) cos 7∘
Step-by-step explanation:
sin47∘−sin25∘+sin61∘−sin11∘
Using the formula for sinc−sind= 2cos(c+d)/2 - sin(c−d)/2
=2cos(47+25)/2∘sin(47−25)/2∘ +2cos(61+11)/2∘sin(61−11)/2∘
=2cos36∘sin11∘+2cos36∘sin25∘
=2cos36∘(sin11∘+sin25∘)
=2cos36∘(sin25∘+sin11∘)
Using sinc+sind=2sin(c+d)/2 - cos(c−d)/2
=2cos36∘[2sin(25+11)/2∘cos(25−11)/2∘]
=4cos36∘sin18∘cos7∘
cos36∘=
sin18=
=4×(5−1)/(4×4)cos7∘
=cos7∘
Similar questions