₹ 4000 is lent at 5 % for the first year, 10 % for the second year and 8 % for the third year. Find the amount and compound interest
Answers
Answered by
0
Answer:
Part A :
⇒ S.I.=
100
P×R×T
=
100
4000×8×2
∴ S.I.=Rs.640
⇒ C.I.=P(1+
100
R
)
T
−P=8000×(1+
100
8
)
2
−8000
⇒ C.I.=8000×
25
27
×
25
27
−8000
∴ C.I.=Rs.665.6
⇒ Difference between C.I. and S.I. = Rs.665.6−Rs.640=Rs.25.6
∴ A=25.6
⇒ Part B :
⇒ Here, R=10% and C.I.−S.I.=Rs.180
⇒ S.I.=
100
P×R×T
=
100
10×P×1
∴ S.I.=
10
P
⇒ C.I.=P(1+
200
R
)
2
−P
⇒ C.I.=P×(
200
210
)
2
−P
⇒ C.I.=
400
441P
−P
∴ C.I.=
400
41P
⇒ C.I.−S.I.=
400
41P
−
10
P
=
400
P
⇒ Given difference is 180
∴
400
P
=180
∴ P=Rs.72000
∴ B=72000
⇒ 10A+B=10×25.6+72000=72256
Step-by-step explanation:
Similar questions
English,
2 months ago
Computer Science,
2 months ago
Math,
4 months ago
Math,
10 months ago
Math,
10 months ago