Physics, asked by Abhita, 1 year ago

41. A convex lens forms 19 times magnified image of an
object on a screen placed 10 m from the lens. What is
the focal length of the lens?
Ans. 0.5 m.
.
1
-1
1
.
1

Answers

Answered by Anonymous
74

\huge{\boxed{\boxed{\mathfrak{\underline{Solution:}}}}}

\large{\bf{\underline{\underline{Given:-}}}}

=> Magnification = -19

=> v = 10 m

\large{\bf{\underline{\underline{To\;Find:-}}}}

=> Focal Length.

\large{\bf{\underline{\underline{Formula\;used:-}}}}

\sf{\implies \dfrac{1}{f}=\dfrac{1}{v} - \dfrac{1}{u} \;\;\;\;\;[Lens\;Formula]}

So,

\sf{\implies Magnification = \dfrac{v}{u}}

\sf{\implies -19=\dfrac{10}{u}}

{\boxed{\boxed{\sf{\implies u = - \dfrac{10}{19}\;m}}}}

Now, By using Lens Formula,

\sf{\implies \dfrac{1}{f}=\dfrac{1}{v} - \dfrac{1}{u} \;\;\;\;\;[Lens\;Formula]}

\sf{\implies \dfrac{1}{f} =\dfrac{1}{10}-\Bigg(\dfrac{1}{-\frac{10}{19}}\Bigg)}

\sf{\implies \dfrac{1}{f} =\dfrac{1}{10}+\dfrac{19}{10}}

\sf{\implies \dfrac{1}{f} =\dfrac{20}{10}=2}

{\boxed{\boxed{\sf{\implies f = \dfrac{1}{2}=0.5\;m}}}}

So, Focal length of lens is 0.5 m.

Similar questions