Math, asked by arianaganguly99, 1 month ago

42.
If x sina cosB, y = sina sinB, z = cosa, x^2 + y^2+ z^2 is equal to
(A) 0
(B) 1
(C) A'B+ c
(D) 2

Answers

Answered by mathdude500
7

Appropriate Question

If x = sina cosb, y = sina sinb, z = cosa, then x² + y² + z² is

equal to

(A) 0

(B) 1

(C) ab + c

(D) 2

 \green{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\: x \:  =  \: sina \: cosb

\rm :\longmapsto\: y \:  =  \: sina \: sinb

\rm :\longmapsto\:z \:  =  \: cosa

Now Consider

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  +  {z}^{2}

\rm \:  =  \:  {(sina \: cosb)}^{2}  +  {(sina \: sinb)}^{2}  +  {(cosa)}^{2}

\rm \:  =  \:  {sin}^{2}a \:  {cos}^{2}b +  {sin}^{2}a \:  {sin}^{2}b \:  +  \:  {cos}^{2} a

\rm \:  =  \: ( {sin}^{2}a \:  {cos}^{2}b +  {sin}^{2}a \:  {sin}^{2}b )\:  +  \:  {cos}^{2} a

\rm \:  =  \:  {sin}^{2}a \: ( {cos}^{2}b +  \:  {sin}^{2}b )\:  +  \:  {cos}^{2} a

\rm \:  =  \:  {sin}^{2}a \: ( 1)\:  +  \:  {cos}^{2} a

\rm \:  =  \:  {sin}^{2}a \:   +  \:  {cos}^{2} a

\rm \:  =  \: 1

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: {x}^{2} +  {y}^{2}  +  {z}^{2}  = 1 \: }}

  • So, option (B) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions