Math, asked by paraspdeshpande, 8 months ago

42. If z-m/z+m (m€ R) is a purely imaginary number
and |z|= 2, then a value of m is
a) 2 ,b)1,c)0.5,d)2^1/2
urgent ​


amitnrw: 2^1/2

Answers

Answered by Anonymous
3

Answer:

\sf{The \ value \ of \ m \ is \ 2.}

Given:

\sf{\leadsto{m \ is \ a \ real \ number \ in \ \dfrac{z-m}{z+m}}}

\sf{which \ results \ in \ a \ purely \ imaginary \ number. }

\sf{\leadsto{|z|=2}}

To find:

\sf{The \ value \ of \ m.}

Solution:

\sf{|z|=2}

\sf{\therefore{\sqrt{x^{2}+y^{2}}=2}}

\sf{\therefore{x^{2}+y^{2}=4...(1)}}

\sf{z=x+yi}

\sf{\leadsto{\dfrac{z-m}{z+m}=0+Ai}}

\sf{\leadsto{\dfrac{x+yi-m}{x+yi+m}=0}}

\sf{On \ rationalizing \ the \ denominator.}

\sf{\leadsto{\dfrac{[(x-m)+yi][(x+m)-yi]}{[(x+m)+yi][(x+m)-yi]}=0+Ai}}

\sf{\leadsto{\dfrac{[x^{2}-m^{2}-yi(x-m)+yi(x+m)-y^{2}i^{2}}{x^{2}+m^{2}+2xm+yi(x+m)-yi(x+m)-y^{2}i^{2}}=0+Ai}}

\sf{\leadsto{\dfrac{x^{2}+y^{2}-m^{2}}{x^{2}+y^{2}+m^{2}+2xm}+\dfrac{yi(x+m)-yi(x+m)}{x^{2}+y^{2}+m^{2}+2xm}=0+Ai}}

\sf{Equating \ real \ part \ we \ get,}

\sf{\dfrac{x^{2}+y^{2}-m^{2}}{x^{2}+y^{2}+m^{2}+2xm}=0}

\sf{\therefore{x^{2}+y^{2}-m^{2}=0}}

\sf{...from \ equation \ (1), \ we \ get}

\sf{\therefore{4-m^{2}=0}}

\sf{\therefore{m^{2}=4}}

\sf{\therefore{m=2}}

\sf\purple{\tt{\therefore{The \ value \ of \ m \ is \ 2.}}}

Similar questions
Math, 3 months ago