Math, asked by rbora023, 11 months ago

42.
The discriminate of the equation 3x2 – 2v3x +1 = 0 is​

Answers

Answered by BrainlyConqueror0901
0

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore D=0}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  {3x}^{2}  - 2 \sqrt{3} x + 1 = 0 \\  \\  \underline \bold{To \: Find : } \\  \implies d = ?

• According to given question :

 \bold{a = 3 \:  \:  \:  \: b = -  2 \sqrt{3}  \:  \:  \:  \:  c =1 }  \\  \\   \bold{Using \: formula \: of \: discriminant : } \\  \implies d =   {b}^{2}  - 4ac \\  \\  \bold{Putting \: given \: values : }  \\  \implies  d =  ({ - 2 \sqrt{3} })^{2}  - 4 \times 3 \times 1 \\  \\  \implies d = 4 \times 3 - 12 \\  \\  \implies d =  \cancel{12 }\cancel{ - 12} \\  \\  \bold {\implies d = 0} \\  \\  \bold{For \: zeroes : } \\  \implies x =  \frac{ - b \pm  \sqrt{d} }{2a}  \\  \\  \implies x =  \frac{ - ( - 2 \sqrt{3} ) \pm \sqrt{0} }{2 \times 3}  \\  \\  \implies x =  \frac{2 \sqrt{3} }{6}  \\  \\   \bold{\implies x =  \frac{ \sqrt{3} }{3} }

Answered by Anonymous
1

SOLUTION:-

Given:

The discriminate of the equation;

•3x² - 2√3x + 1=0

Therefore,

Compare the given equation with;

⚫Ax² + Bx + C= 0

•A= 3

•B= -2√3

•C= 1

We know that,

D= b² - 4ac is called discriminant.

So,

=) D= (2√3)² - 4(3)(1)

=) D= 4×3 - 4× 3

=) D= 12 - 12

=) D= 0

Thus,

•The roots of the equation are real & equal.

&

In this case:

 =  > \frac{ - b ± 0}{2a}  \\  \\  =  >  \frac{ - b}{2a}

Some related formulas:

•If b² -4ac= D≥0, then roots are real.

•If b² - 4ac > 0, then roots are real & unequal.

Hope it helps ☺️

Similar questions